File size: 5,255 Bytes
0c7a866
2d1e9e0
 
 
0c7a866
 
2d1e9e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d05b8a
 
 
 
9e9e748
4d05b8a
 
 
 
 
 
 
 
 
9e9e748
 
 
4d05b8a
 
2d1e9e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d05b8a
2d1e9e0
 
 
 
 
 
 
 
9e9e748
 
a8306f7
3f6c3d9
2d1e9e0
 
9e9e748
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import gradio as gr
import pandas as pd
import numpy as np
from fetch_plot_data import get_plot_data


def get_time_series_data():
    # Fetch and process data
    plot_data = get_plot_data(hours=24)
    plot_data["datetime"] = pd.to_datetime(plot_data["datetime"])
    time_series_data = pd.DataFrame({
        "Datetime": plot_data["datetime"],
        "Actual BTC/USD": plot_data["labels"],
        "Predicted BTC/USD": plot_data["prediction"]
    })
    time_series_data = time_series_data.sort_values(by="Datetime")
    time_series_data["Datetime"] = time_series_data["Datetime"].dt.strftime(
        "%Y-%m-%d %H:%M")

    all_values = np.concatenate([time_series_data["Actual BTC/USD"],
                                 time_series_data["Predicted BTC/USD"]])
    y_min = np.min(all_values)
    y_max = np.max(all_values)
    y_range = y_max - y_min
    padding = y_range * 0.0005
    y_min = y_min - padding
    y_max = y_max + padding

    long_data = time_series_data.melt(
        id_vars="Datetime",
        var_name="Series",
        value_name="BTC/USD Value"
    )
    return (long_data, y_min, y_max)


def update_plot():
    """Function to update plot data and timestamp"""
    data, y_min, y_max = get_time_series_data()
    timestamp = pd.Timestamp.now().strftime("%Y-%m-%d %H:%M:%S")

    footer_html = f"""
    <div class="footer-content">
        <div class="footer-left">
            Last updated: {timestamp}
            <br>
            <a href="https://nafis-neehal.github.io/" target="_blank" class="developer-info">Developed by Nafis Neehal</a>
        </div>
    </div>
    """

    # Return values directly instead of using .update()
    return data, footer_html


custom_css = """
body {
    background-color: #f8fafc !important;
}
.gradio-container {
    max-width: 1200px !important;
    margin: 2rem auto !important;
    padding: 2rem !important;
    background-color: white !important;
    border-radius: 1rem !important;
    box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1), 0 2px 4px -1px rgba(0, 0, 0, 0.06) !important;
}
.main-title {
    color: #1e293b !important;
    font-size: 2.5rem !important;
    font-weight: 700 !important;
    text-align: center !important;
    margin-bottom: 0.5rem !important;
    line-height: 1.2 !important;
}
.subtitle {
    color: #64748b !important;
    font-size: 1.125rem !important;
    text-align: center !important;
    margin-bottom: 1.5rem !important;
    font-weight: 500 !important;
}
.chart-container {
    margin-bottom: 1rem !important;
}
.footer-content {
    margin-top: 1rem !important;
    padding-top: 1rem !important;
    border-top: 1px solid #e2e8f0 !important;
    display: flex !important;
    justify-content: space-between !important;
    align-items: center !important;
    color: #64748b !important;
    font-size: 0.875rem !important;
}
.footer-left {
    text-align: left !important;
}
.footer-right {
    text-align: right !important;
}
.developer-info {
    color: #3b82f6 !important;
    font-weight: 500 !important;
    text-decoration: none !important;
    transition: color 0.2s !important;
}
.developer-info:hover {
    color: #2563eb !important;
}
"""

# Initialize the Gradio app
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as app:
    with gr.Column():
        # Title and subtitle
        gr.Markdown("""
            <div class="main-title">Live BTC/USD Time Series Info</div>
            <div class="subtitle">Predictions served via Hopsworks API</div>
        """)

        initial_data, initial_y_min, initial_y_max = get_time_series_data()

        # Chart with reduced bottom margin
        with gr.Column(elem_classes=["chart-container"]):
            line_plot = gr.LinePlot(
                value=initial_data,
                x="Datetime",
                y="BTC/USD Value",
                color="Series",
                title="",
                y_title="BTC/USD Value",
                x_title="Time",
                x_label_angle=45,
                width=1000,
                height=450,  # Slightly reduced height
                colors={
                    "Actual BTC/USD": "#3b82f6",
                    "Predicted BTC/USD": "#ef4444"
                },
                tooltip=["Datetime", "BTC/USD Value", "Series"],
                overlay_point=True,
                zoom=False,
                pan=False,
                show_label=True,
                stroke_width=2,
                y_min=initial_y_min,
                y_max=initial_y_max,
                y_lim=[initial_y_min, initial_y_max],
                show_grid=True,
            )

        # Footer with timestamp and developer info
        footer = gr.Markdown(f"""
            <div class="footer-content">
                <div class="footer-left">
                    Last updated: {pd.Timestamp.now().strftime("%Y-%m-%d %H:%M:%S")}
                    <br>
                    <a href="https://nafis-neehal.github.io/" target="_blank" class="developer-info">Developed by Nafis Neehal</a>
                </div>
            </div>
        """)

        # Set up timer for half-hourly updates (1800 seconds)
        timer = gr.Timer(3600)
        timer.tick(update_plot, inputs=None, outputs=[line_plot, footer])

# Launch the app
app.launch()