Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,63 +8,74 @@ def safe_load_yolo_model(path):
|
|
| 8 |
torch.serialization.add_safe_globals([torch, 'ultralytics.nn.tasks.DetectionModel'])
|
| 9 |
return YOLO(path)
|
| 10 |
|
| 11 |
-
#
|
| 12 |
-
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
cap = cv2.VideoCapture(video)
|
| 18 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 19 |
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 20 |
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 21 |
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
|
| 26 |
while cap.isOpened():
|
| 27 |
ret, frame = cap.read()
|
| 28 |
if not ret:
|
| 29 |
break
|
| 30 |
-
|
| 31 |
-
# Detect with YOLOv11 (general object detection model)
|
| 32 |
-
results_yolo11 = model_yolo11(frame)
|
| 33 |
-
# Detect with best.pt (specialized model for cracks and potholes)
|
| 34 |
-
results_best = model_best(frame)
|
| 35 |
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
boxes = result.boxes
|
| 39 |
-
for box in boxes:
|
| 40 |
-
x1, y1, x2, y2 = map(int, box.xyxy[0].tolist())
|
| 41 |
-
class_id = int(box.cls[0]) # Class index for YOLO
|
| 42 |
-
# Use model's built-in class names
|
| 43 |
-
label = f"{model_yolo11.names[class_id]} - {box.conf[0]:.2f}"
|
| 44 |
-
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
| 45 |
-
cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
|
| 46 |
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
cv2.rectangle(frame, (x1, y1), (x2, y2), (255, 0, 0), 2)
|
| 56 |
-
cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (255, 0, 0), 2)
|
| 57 |
|
| 58 |
-
# Write the processed frame to the output video
|
| 59 |
out.write(frame)
|
| 60 |
|
| 61 |
cap.release()
|
| 62 |
out.release()
|
| 63 |
-
|
| 64 |
return 'output_video.mp4'
|
| 65 |
|
| 66 |
-
# Gradio
|
| 67 |
-
iface = gr.Interface(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
-
# Launch the app
|
| 70 |
iface.launch()
|
|
|
|
| 8 |
torch.serialization.add_safe_globals([torch, 'ultralytics.nn.tasks.DetectionModel'])
|
| 9 |
return YOLO(path)
|
| 10 |
|
| 11 |
+
# Dictionary of model paths
|
| 12 |
+
model_paths = {
|
| 13 |
+
'YOLOv11': './data/yolo11n.pt',
|
| 14 |
+
'Crack & Pothole Detector': './data/best2.pt',
|
| 15 |
+
'Bridge Inspector': './data/bridge.pt',
|
| 16 |
+
'Road Surface Detector': './data/road.pt',
|
| 17 |
+
'Pipe Detector': './data/pipe.pt'
|
| 18 |
+
}
|
| 19 |
|
| 20 |
+
# Load models into memory
|
| 21 |
+
models = {name: safe_load_yolo_model(path) for name, path in model_paths.items()}
|
| 22 |
+
|
| 23 |
+
# Assign colors for each model
|
| 24 |
+
model_colors = {
|
| 25 |
+
'YOLOv11': (0, 255, 0),
|
| 26 |
+
'Crack & Pothole Detector': (255, 0, 0),
|
| 27 |
+
'Bridge Inspector': (0, 0, 255),
|
| 28 |
+
'Road Surface Detector': (255, 255, 0),
|
| 29 |
+
'Pipe Detector': (255, 0, 255)
|
| 30 |
+
}
|
| 31 |
+
|
| 32 |
+
def process_video(video, selected_model):
|
| 33 |
cap = cv2.VideoCapture(video)
|
| 34 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 35 |
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 36 |
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 37 |
|
| 38 |
+
out = cv2.VideoWriter('output_video.mp4', cv2.VideoWriter_fourcc(*'mp4v'), fps, (frame_width, frame_height))
|
| 39 |
+
|
| 40 |
+
use_models = models if selected_model == 'All' else {selected_model: models[selected_model]}
|
| 41 |
|
| 42 |
while cap.isOpened():
|
| 43 |
ret, frame = cap.read()
|
| 44 |
if not ret:
|
| 45 |
break
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
+
for model_name, model in use_models.items():
|
| 48 |
+
results = model(frame)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
+
for result in results:
|
| 51 |
+
for box in result.boxes:
|
| 52 |
+
x1, y1, x2, y2 = map(int, box.xyxy[0].tolist())
|
| 53 |
+
class_id = int(box.cls[0])
|
| 54 |
+
label = f"{model.names[class_id]} - {box.conf[0]:.2f}"
|
| 55 |
+
color = model_colors.get(model_name, (0, 255, 255))
|
| 56 |
+
cv2.rectangle(frame, (x1, y1), (x2, y2), color, 2)
|
| 57 |
+
cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, color, 2)
|
|
|
|
|
|
|
| 58 |
|
|
|
|
| 59 |
out.write(frame)
|
| 60 |
|
| 61 |
cap.release()
|
| 62 |
out.release()
|
|
|
|
| 63 |
return 'output_video.mp4'
|
| 64 |
|
| 65 |
+
# Gradio Interface
|
| 66 |
+
iface = gr.Interface(
|
| 67 |
+
fn=process_video,
|
| 68 |
+
inputs=[
|
| 69 |
+
gr.Video(label="Upload a Video"),
|
| 70 |
+
gr.Dropdown(
|
| 71 |
+
choices=["All"] + list(model_paths.keys()),
|
| 72 |
+
label="Select Model(s)",
|
| 73 |
+
value="All"
|
| 74 |
+
)
|
| 75 |
+
],
|
| 76 |
+
outputs=gr.Video(label="Processed Output"),
|
| 77 |
+
live=False,
|
| 78 |
+
title="Multi-Model YOLOv8 Video Inference"
|
| 79 |
+
)
|
| 80 |
|
|
|
|
| 81 |
iface.launch()
|