Spaces:
Sleeping
Sleeping
Upload app.py with huggingface_hub
Browse files
app.py
CHANGED
@@ -149,7 +149,21 @@ def expand_query(state: AgentState) -> AgentState:
|
|
149 |
state['expanded_query'] = chain.invoke({"query": state['query'], "question": state['query'], "query_feedback": state.get('query_feedback', '')}) # Pass all required variables
|
150 |
return state
|
151 |
|
|
|
152 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
|
154 |
def retrieve_context(state: AgentState) -> AgentState:
|
155 |
"""
|
|
|
149 |
state['expanded_query'] = chain.invoke({"query": state['query'], "question": state['query'], "query_feedback": state.get('query_feedback', '')}) # Pass all required variables
|
150 |
return state
|
151 |
|
152 |
+
db_loc = 'nutritional_db'
|
153 |
|
154 |
+
# Initialize the Chroma vector store for retrieving documents
|
155 |
+
vector_store = Chroma(
|
156 |
+
collection_name="nutritional_hypotheticals",
|
157 |
+
persist_directory=db_loc,
|
158 |
+
embedding_function=embedding_model
|
159 |
+
|
160 |
+
)
|
161 |
+
|
162 |
+
# Create a retriever from the vector store
|
163 |
+
retriever = vector_store.as_retriever(
|
164 |
+
search_type='similarity',
|
165 |
+
search_kwargs={'k': 3}
|
166 |
+
)
|
167 |
|
168 |
def retrieve_context(state: AgentState) -> AgentState:
|
169 |
"""
|