File size: 7,270 Bytes
bfc97b7
 
9657c92
 
 
 
bfc97b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218



import os
os.system("git clone https://huggingface.co/Cene655/ImagenT5-3B")

#%%capture
#!git lfs install
#!git clone https://huggingface.co/Cene655/ImagenT5-3B

#%%capture
#!pip install git+https://github.com/cene555/Imagen-pytorch.git
#!pip install git+https://github.com/openai/CLIP.git

#%%capture
#!git clone https://github.com/xinntao/Real-ESRGAN.git

#%cd Real-ESRGAN

#%%capture
#!pip install basicsr
# facexlib and gfpgan are for face enhancement
#!pip install facexlib
#!pip install gfpgan

#%%capture
#!pip install -r requirements.txt
#!python setup.py develop
#!wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth -P experiments/pretrained_models

#Imports

from PIL import Image
from IPython.display import display
import torch as th
from imagen_pytorch.model_creation import create_model_and_diffusion as create_model_and_diffusion_dalle2
from imagen_pytorch.model_creation import model_and_diffusion_defaults as model_and_diffusion_defaults_dalle2
from transformers import AutoTokenizer
import cv2

import glob
import os
from basicsr.archs.rrdbnet_arch import RRDBNet
from realesrgan import RealESRGANer
from realesrgan.archs.srvgg_arch import SRVGGNetCompact
from gfpgan import GFPGANer

has_cuda = th.cuda.is_available()
device = th.device('cpu' if not has_cuda else 'cuda')

Setting Up

def model_fn(x_t, ts, **kwargs):
    guidance_scale = 5
    half = x_t[: len(x_t) // 2]
    combined = th.cat([half, half], dim=0)
    model_out = model(combined, ts, **kwargs)
    eps, rest = model_out[:, :3], model_out[:, 3:]
    cond_eps, uncond_eps = th.split(eps, len(eps) // 2, dim=0)
    half_eps = uncond_eps + guidance_scale * (cond_eps - uncond_eps)
    eps = th.cat([half_eps, half_eps], dim=0)
    return th.cat([eps, rest], dim=1)

def show_images(batch: th.Tensor):
    """ Display a batch of images inline."""
    scaled = ((batch + 1)*127.5).round().clamp(0,255).to(th.uint8).cpu()
    reshaped = scaled.permute(2, 0, 3, 1).reshape([batch.shape[2], -1, 3])
    display(Image.fromarray(reshaped.numpy()))

def get_numpy_img(img):
    scaled = ((img + 1)*127.5).round().clamp(0,255).to(th.uint8).cpu()
    reshaped = scaled.permute(2, 0, 3, 1).reshape([img.shape[2], -1, 3])
    return cv2.cvtColor(reshaped.numpy(), cv2.COLOR_BGR2RGB)

def _fix_path(path):
  d = th.load(path)
  checkpoint = {}
  for key in d.keys():
    checkpoint[key.replace('module.','')] = d[key]
  return checkpoint

options = model_and_diffusion_defaults_dalle2()
options['use_fp16'] = False
options['diffusion_steps'] = 200
options['num_res_blocks'] = 3
options['t5_name'] = 't5-3b'
options['cache_text_emb'] = True
model, diffusion = create_model_and_diffusion_dalle2(**options)

model.eval()

#if has_cuda:
#    model.convert_to_fp16()

model.to(device)

model.load_state_dict(_fix_path('/content/ImagenT5-3B/model.pt'))
print('total base parameters', sum(x.numel() for x in model.parameters()))

total base parameters 1550556742

num_params = sum(param.numel() for param in model.parameters())
num_params

1550556742

realesrgan_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64,
                           num_block=23, num_grow_ch=32, scale=4)

netscale = 4

upsampler = RealESRGANer(
    scale=netscale,
    model_path='/content/Real-ESRGAN/experiments/pretrained_models/RealESRGAN_x4plus.pth',
    model=realesrgan_model,
    tile=0,
    tile_pad=10,
    pre_pad=0,
    half=True
)

face_enhancer = GFPGANer(
    model_path='https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth',
    upscale=4,
    arch='clean',
    channel_multiplier=2,
    bg_upsampler=upsampler
)

tokenizer = AutoTokenizer.from_pretrained(options['t5_name'])

/usr/local/lib/python3.7/dist-packages/transformers/models/t5/tokenization_t5_fast.py:161: FutureWarning: This tokenizer was incorrectly instantiated with a model max length of 512 which will be corrected in Transformers v5.
For now, this behavior is kept to avoid breaking backwards compatibility when padding/encoding with `truncation is True`.
- Be aware that you SHOULD NOT rely on t5-3b automatically truncating your input to 512 when padding/encoding.
- If you want to encode/pad to sequences longer than 512 you can either instantiate this tokenizer with `model_max_length` or pass `max_length` when encoding/padding.
- To avoid this warning, please instantiate this tokenizer with `model_max_length` set to your preferred value.
  FutureWarning,

#@title What do you want to generate?

prompt = 'A photo of cat'#@param {type:"string"}

def gen_img(prompt):

    text_encoding = tokenizer(
        prompt,
        max_length=128,
        padding="max_length",
        truncation=True,
        return_attention_mask=True,
        add_special_tokens=True,
        return_tensors="pt"
    )

    uncond_text_encoding = tokenizer(
        '',
        max_length=128,
        padding="max_length",
        truncation=True,
        return_attention_mask=True,
        add_special_tokens=True,
        return_tensors="pt"
    )

    import numpy as np
    batch_size = 4
    cond_tokens = th.from_numpy(np.array([text_encoding['input_ids'][0].numpy() for i in range(batch_size)]))
    uncond_tokens = th.from_numpy(np.array([uncond_text_encoding['input_ids'][0].numpy() for i in range(batch_size)]))
    cond_attention_mask = th.from_numpy(np.array([text_encoding['attention_mask'][0].numpy() for i in range(batch_size)]))
    uncond_attention_mask = th.from_numpy(np.array([uncond_text_encoding['attention_mask'][0].numpy() for i in range(batch_size)]))
    model_kwargs = {}
    model_kwargs["tokens"] = th.cat((cond_tokens,
                                    uncond_tokens)).to(device)
    model_kwargs["mask"] = th.cat((cond_attention_mask,
                                uncond_attention_mask)).to(device)

    Generation

    model.del_cache()
    sample = diffusion.p_sample_loop(
        model_fn,
        (batch_size * 2, 3, 64, 64),
        clip_denoised=True,
        model_kwargs=model_kwargs,
        device='cuda',
        progress=True,
    )[:batch_size]
    model.del_cache()

    return sample

demo = gr.Blocks()

with demo:
  gr.Markdown("<h1><center>cene555/Imagen-pytorch</center></h1>")
  gr.Markdown(
        "<div>github repo <a href='https://github.com/cene555/Imagen-pytorch/blob/main/images/2.jpg'>here</a></div>"
        "<div>hf model <a href='https://huggingface.co/Cene655/ImagenT5-3B/tree/main'>here</a></div>"
    )
  
  with gr.Row():
    b0 = gr.Button("generate")
    b1 = gr.Button("upscale")
  
  with gr.Row():  
    desc = gr.Textbox(label="description",placeholder="an impressionist painting of a white vase")
    
  with gr.Row():
    intermediate_image = gr.Image(label="portrait",type="filepath", shape=(256,256))
    output_image = gr.Image(label="portrait",type="filepath", shape=(256,256))
  
  b0.click(gen_img,inputs=[desc],outputs=[intermediate_image])
  b1.click(upscale_img, inputs=[ intermediate_image], outputs=output_image)
  #examples=examples

demo.launch(enable_queue=True, debug=True)