File size: 4,543 Bytes
22da9a9 50f2907 22da9a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
import numpy as np
import tmatrix
from utils import layer_wise_dot_product, struve, bessel
from config import AcousticalConstantsConfig
def simulate_loudspeaker(
thiele_small_params: dict,
angular_freq_array: np.ndarray,
acoustical_constants: AcousticalConstantsConfig,
):
n_bins = len(angular_freq_array)
Re_tmatrix = tmatrix.resistance_series(thiele_small_params["Re"], n_bins)
Z_Le_tmatrix = tmatrix.inductance_series(
thiele_small_params["Le"], angular_freq_array
)
Bl_tmatrix = tmatrix.gyrator(thiele_small_params["Bl"], n_bins)
Z_Mm_tmatrix = tmatrix.inductance_series(
thiele_small_params["Mm"], angular_freq_array
)
Z_Cm_tmatrix = tmatrix.capacitance_series(
thiele_small_params["Cm"], angular_freq_array
)
Rm_tmatrix = tmatrix.resistance_series(thiele_small_params["Rm"], n_bins)
electro_mechanical_tmatrix = layer_wise_dot_product(
Re_tmatrix,
Z_Le_tmatrix,
Bl_tmatrix,
Z_Mm_tmatrix,
Z_Cm_tmatrix,
Rm_tmatrix,
)
t_11 = electro_mechanical_tmatrix[0, 0]
t_12 = electro_mechanical_tmatrix[0, 1]
t_21 = electro_mechanical_tmatrix[1, 0]
t_22 = electro_mechanical_tmatrix[1, 1]
# Electrical response
electrical_impedance_shorted_output = t_12 / t_22
# Mechanical response
electrical_input_voltage = np.ones(n_bins)
electrical_input_current = (
electrical_input_voltage / electrical_impedance_shorted_output
)
electro_mechanical_tmatrix_det = np.abs(t_11 * t_22 - t_12 * t_21)
electro_mechanical_tmatrix_inv = np.array(
[
[
t_22 / electro_mechanical_tmatrix_det,
-t_12 / electro_mechanical_tmatrix_det,
],
[
-t_21 / electro_mechanical_tmatrix_det,
t_11 / electro_mechanical_tmatrix_det,
],
]
)
mechanical_force, mechanical_velocity = layer_wise_dot_product(
electro_mechanical_tmatrix_inv,
np.array(
[
[electrical_input_voltage, electrical_input_voltage],
[electrical_input_current, electrical_input_current],
]
),
)[:, 0]
# Acoustical response
air_impedance = acoustical_constants.air_density * acoustical_constants.sound_speed
wave_number_array = angular_freq_array / acoustical_constants.sound_speed
effective_radiation_radius = thiele_small_params["effective_diameter"] / 2
ka_array = wave_number_array * effective_radiation_radius
Sd_value = np.pi * effective_radiation_radius**2
Sd_tmatrix = tmatrix.transformer(Sd_value, n_bins)
### Mechanical impedance of radiation
ZM_rad_real_array = Sd_value * air_impedance * (1 - bessel(2 * ka_array) / ka_array)
ZM_rad_imag_array = (
Sd_value * air_impedance * (1j * (struve(2 * ka_array) / ka_array))
)
ZM_rad_array = ZM_rad_real_array + ZM_rad_imag_array
ZM_rad_tmatrix = np.array(
[[np.ones(n_bins), ZM_rad_array], [np.zeros(n_bins), np.ones(n_bins)]]
)
# Specific acoustic impedance
ZA_rad = (
1j
* angular_freq_array
* acoustical_constants.air_density
* acoustical_constants.directivity_factor
) / (
4
* np.pi
* acoustical_constants.measurement_distance
* np.exp(1j * wave_number_array * acoustical_constants.measurement_distance)
)
Z_delay = 1j * np.exp(
-1j * wave_number_array * acoustical_constants.measurement_distance
) # Phase rotation due air propagation time
electro_mechanical_acoustic_tmatrix = layer_wise_dot_product(
electro_mechanical_tmatrix, ZM_rad_tmatrix, Sd_tmatrix
)
electrical_input_voltage = 2.83
t_11 = electro_mechanical_acoustic_tmatrix[0, 0]
t_12 = electro_mechanical_acoustic_tmatrix[0, 1]
t_21 = electro_mechanical_acoustic_tmatrix[1, 0]
t_22 = electro_mechanical_acoustic_tmatrix[1, 1]
voltage_pressure_transfer_function = (ZA_rad) / (t_11 * ZA_rad + t_12)
acoustical_pressure = (
electrical_input_voltage
* (voltage_pressure_transfer_function / Z_delay)
/ acoustical_constants.reference_pressure
)
loudspeaker_responses = {
"electrical_impedance": electrical_impedance_shorted_output,
"mechanical_force": mechanical_force,
"mechanical_velocity": mechanical_velocity,
"acoustical_pressure": acoustical_pressure,
}
return loudspeaker_responses
|