File size: 4,543 Bytes
22da9a9
 
50f2907
 
 
22da9a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import numpy as np

import tmatrix
from utils import layer_wise_dot_product, struve, bessel
from config import AcousticalConstantsConfig


def simulate_loudspeaker(
    thiele_small_params: dict,
    angular_freq_array: np.ndarray,
    acoustical_constants: AcousticalConstantsConfig,
):

    n_bins = len(angular_freq_array)
    Re_tmatrix = tmatrix.resistance_series(thiele_small_params["Re"], n_bins)
    Z_Le_tmatrix = tmatrix.inductance_series(
        thiele_small_params["Le"], angular_freq_array
    )
    Bl_tmatrix = tmatrix.gyrator(thiele_small_params["Bl"], n_bins)
    Z_Mm_tmatrix = tmatrix.inductance_series(
        thiele_small_params["Mm"], angular_freq_array
    )
    Z_Cm_tmatrix = tmatrix.capacitance_series(
        thiele_small_params["Cm"], angular_freq_array
    )
    Rm_tmatrix = tmatrix.resistance_series(thiele_small_params["Rm"], n_bins)

    electro_mechanical_tmatrix = layer_wise_dot_product(
        Re_tmatrix,
        Z_Le_tmatrix,
        Bl_tmatrix,
        Z_Mm_tmatrix,
        Z_Cm_tmatrix,
        Rm_tmatrix,
    )

    t_11 = electro_mechanical_tmatrix[0, 0]
    t_12 = electro_mechanical_tmatrix[0, 1]
    t_21 = electro_mechanical_tmatrix[1, 0]
    t_22 = electro_mechanical_tmatrix[1, 1]

    # Electrical response
    electrical_impedance_shorted_output = t_12 / t_22

    # Mechanical response
    electrical_input_voltage = np.ones(n_bins)
    electrical_input_current = (
        electrical_input_voltage / electrical_impedance_shorted_output
    )

    electro_mechanical_tmatrix_det = np.abs(t_11 * t_22 - t_12 * t_21)

    electro_mechanical_tmatrix_inv = np.array(
        [
            [
                t_22 / electro_mechanical_tmatrix_det,
                -t_12 / electro_mechanical_tmatrix_det,
            ],
            [
                -t_21 / electro_mechanical_tmatrix_det,
                t_11 / electro_mechanical_tmatrix_det,
            ],
        ]
    )

    mechanical_force, mechanical_velocity = layer_wise_dot_product(
        electro_mechanical_tmatrix_inv,
        np.array(
            [
                [electrical_input_voltage, electrical_input_voltage],
                [electrical_input_current, electrical_input_current],
            ]
        ),
    )[:, 0]

    # Acoustical response
    air_impedance = acoustical_constants.air_density * acoustical_constants.sound_speed
    wave_number_array = angular_freq_array / acoustical_constants.sound_speed

    effective_radiation_radius = thiele_small_params["effective_diameter"] / 2

    ka_array = wave_number_array * effective_radiation_radius
    Sd_value = np.pi * effective_radiation_radius**2
    Sd_tmatrix = tmatrix.transformer(Sd_value, n_bins)

    ### Mechanical impedance of radiation
    ZM_rad_real_array = Sd_value * air_impedance * (1 - bessel(2 * ka_array) / ka_array)
    ZM_rad_imag_array = (
        Sd_value * air_impedance * (1j * (struve(2 * ka_array) / ka_array))
    )
    ZM_rad_array = ZM_rad_real_array + ZM_rad_imag_array
    ZM_rad_tmatrix = np.array(
        [[np.ones(n_bins), ZM_rad_array], [np.zeros(n_bins), np.ones(n_bins)]]
    )

    # Specific acoustic impedance
    ZA_rad = (
        1j
        * angular_freq_array
        * acoustical_constants.air_density
        * acoustical_constants.directivity_factor
    ) / (
        4
        * np.pi
        * acoustical_constants.measurement_distance
        * np.exp(1j * wave_number_array * acoustical_constants.measurement_distance)
    )
    Z_delay = 1j * np.exp(
        -1j * wave_number_array * acoustical_constants.measurement_distance
    )  # Phase rotation due air propagation time

    electro_mechanical_acoustic_tmatrix = layer_wise_dot_product(
        electro_mechanical_tmatrix, ZM_rad_tmatrix, Sd_tmatrix
    )

    electrical_input_voltage = 2.83

    t_11 = electro_mechanical_acoustic_tmatrix[0, 0]
    t_12 = electro_mechanical_acoustic_tmatrix[0, 1]
    t_21 = electro_mechanical_acoustic_tmatrix[1, 0]
    t_22 = electro_mechanical_acoustic_tmatrix[1, 1]

    voltage_pressure_transfer_function = (ZA_rad) / (t_11 * ZA_rad + t_12)

    acoustical_pressure = (
        electrical_input_voltage
        * (voltage_pressure_transfer_function / Z_delay)
        / acoustical_constants.reference_pressure
    )

    loudspeaker_responses = {
        "electrical_impedance": electrical_impedance_shorted_output,
        "mechanical_force": mechanical_force,
        "mechanical_velocity": mechanical_velocity,
        "acoustical_pressure": acoustical_pressure,
    }

    return loudspeaker_responses