File size: 5,425 Bytes
22da9a9 50f2907 22da9a9 7c09abf 53c665c 7c09abf 22da9a9 7c09abf 22da9a9 7f8cc46 22da9a9 7f8cc46 22da9a9 7c09abf 22da9a9 7f8cc46 22da9a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
import numpy as np
import tmatrix
from utils import layer_wise_dot_product, struve, bessel
from config import AcousticalConstantsConfig
def simulate_loudspeaker(
thiele_small_params: dict,
angular_freq_array: np.ndarray,
acoustical_constants: AcousticalConstantsConfig,
):
n_bins = len(angular_freq_array)
Re_tmatrix = tmatrix.resistance_series(thiele_small_params["Re"], n_bins)
Z_Le_tmatrix = tmatrix.inductance_series(
thiele_small_params["Le"], angular_freq_array
)
Bl_tmatrix = tmatrix.gyrator(thiele_small_params["Bl"], n_bins)
Z_Mm_tmatrix = tmatrix.inductance_series(
thiele_small_params["Mm"], angular_freq_array
)
Z_Cm_tmatrix = tmatrix.capacitance_series(
thiele_small_params["Cm"], angular_freq_array
)
Rm_tmatrix = tmatrix.resistance_series(thiele_small_params["Rm"], n_bins)
electro_mechanical_tmatrix = layer_wise_dot_product(
Re_tmatrix,
Z_Le_tmatrix,
Bl_tmatrix,
Z_Mm_tmatrix,
Z_Cm_tmatrix,
Rm_tmatrix,
)
t_11 = electro_mechanical_tmatrix[0, 0]
t_12 = electro_mechanical_tmatrix[0, 1]
t_21 = electro_mechanical_tmatrix[1, 0]
t_22 = electro_mechanical_tmatrix[1, 1]
# Electrical response
electrical_impedance_shorted_output = t_12 / t_22
# Mechanical response
electrical_input_voltage = np.ones(n_bins)
electrical_input_current = (
electrical_input_voltage / electrical_impedance_shorted_output
)
electro_mechanical_tmatrix_det = np.abs(t_11 * t_22 - t_12 * t_21)
electro_mechanical_tmatrix_inv = np.array(
[
[
t_22 / electro_mechanical_tmatrix_det,
-t_12 / electro_mechanical_tmatrix_det,
],
[
-t_21 / electro_mechanical_tmatrix_det,
t_11 / electro_mechanical_tmatrix_det,
],
]
)
mechanical_force, mechanical_velocity = layer_wise_dot_product(
electro_mechanical_tmatrix_inv,
np.array(
[
[electrical_input_voltage, electrical_input_voltage],
[electrical_input_current, electrical_input_current],
]
),
)[:, 0]
mechanical_displacement = mechanical_velocity / (
1j * angular_freq_array
) # [(m/s) / (rad/s)] = [m/rad]
mechanical_displacement = mechanical_displacement * 1000 # [mm]
# Acoustical response
air_impedance = acoustical_constants.air_density * acoustical_constants.sound_speed
wave_number_array = angular_freq_array / acoustical_constants.sound_speed
effective_radiation_radius = thiele_small_params["effective_diameter"] / 2
ka_array = wave_number_array * effective_radiation_radius
Sd_value = np.pi * effective_radiation_radius**2
Sd_tmatrix = tmatrix.transformer(Sd_value, n_bins)
### Mechanical impedance of radiation
ZM_rad_real_array = Sd_value * air_impedance * (1 - bessel(2 * ka_array) / ka_array)
ZM_rad_imag_array = (
Sd_value * air_impedance * (1j * (struve(2 * ka_array) / ka_array))
)
ZM_rad_array = (ZM_rad_real_array + 1j * ZM_rad_imag_array).astype(np.complex128)
ZM_rad_tmatrix = np.array(
[[np.ones(n_bins), ZM_rad_array], [np.zeros(n_bins), np.ones(n_bins)]]
)
# Specific acoustic impedance
ZA_rad = (
1j
* angular_freq_array
* acoustical_constants.air_density
* acoustical_constants.directivity_factor
) / (
4
* np.pi
* acoustical_constants.measurement_distance
* np.exp(1j * wave_number_array * acoustical_constants.measurement_distance)
)
Z_delay = np.exp(
-1j * wave_number_array * acoustical_constants.measurement_distance
) # Phase rotation due air propagation time
electro_mechanical_acoustic_tmatrix = layer_wise_dot_product(
electro_mechanical_tmatrix, ZM_rad_tmatrix, Sd_tmatrix
)
electrical_input_voltage = 2.83
t_11 = electro_mechanical_acoustic_tmatrix[0, 0]
t_12 = electro_mechanical_acoustic_tmatrix[0, 1]
t_21 = electro_mechanical_acoustic_tmatrix[1, 0]
t_22 = electro_mechanical_acoustic_tmatrix[1, 1]
voltage_pressure_transfer_function = (ZA_rad) / (t_11 * ZA_rad + t_12)
acoustical_pressure = (
electrical_input_voltage
* (voltage_pressure_transfer_function / Z_delay)
/ acoustical_constants.reference_pressure
)
# fmt: off
mechanical_fs = 1 / (2*np.pi*(thiele_small_params["Mm"]*thiele_small_params["Cm"])**(1/2))
Qm = 2*np.pi*mechanical_fs*(thiele_small_params["Mm"]+0.00092)/thiele_small_params["Rm"]
Qe = 2*np.pi*mechanical_fs*(thiele_small_params["Mm"]+0.00092)/(thiele_small_params["Bl"]**2/thiele_small_params["Re"])
Qt = (Qm*Qe) / (Qm+Qe)
# fmt: on
loudspeaker_responses = {
"electrical_impedance": electrical_impedance_shorted_output,
"mechanical_force": mechanical_force,
"mechanical_velocity": mechanical_velocity,
"mechanical_displacement": mechanical_displacement,
"acoustical_pressure": acoustical_pressure,
"selectivity_params": {
"fs": np.round(mechanical_fs, 2),
"Qm": np.round(Qm, 2),
"Qe": np.round(Qe, 2),
"Qt": np.round(Qt, 2),
},
}
return loudspeaker_responses
|