import torch from torchvision import transforms import gradio as gr import timm # Read the categories with open("labels.txt", "r") as f: categories = [s.strip() for s in f.readlines()] model_ft = timm.create_model('vit_base_patch16_224_in21k', pretrained=True, num_classes=len(categories)) model_path = 'best_cpu.pt' model_ft.load_state_dict(torch.load(model_path, map_location=torch.device('cpu'))) model_ft.eval() # Download an example image from the pytorch website # torch.hub.download_url_to_file("https://iiif.dl.itc.u-tokyo.ac.jp/iiif/genji/TIFF/A00_6587/01/01_0001.tif/full/,400/0/default.jpg", "examples/other.jpg") # torch.hub.download_url_to_file("https://iiif.dl.itc.u-tokyo.ac.jp/iiif/genji/TIFF/A00_6587/01/01_0002.tif/full/,400/0/default.jpg", "examples/front.jpg") # torch.hub.download_url_to_file("https://iiif.dl.itc.u-tokyo.ac.jp/iiif/genji/TIFF/A00_6587/01/01_0003.tif/full/,400/0/default.jpg", "examples/page.jpg") # torch.hub.download_url_to_file("https://iiif.dl.itc.u-tokyo.ac.jp/iiif/genji/TIFF/A00_6587/01/01_0009.tif/full/,400/0/default.jpg", "examples/page2.jpg") # torch.hub.download_url_to_file("https://iiif.dl.itc.u-tokyo.ac.jp/iiif/genji/TIFF/A00_6587/01/01_0032.tif/full/,400/0/default.jpg", "examples/back.jpg") def inference(input_image): preprocess = transforms.Compose([ transforms.Resize(224), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) input_tensor = preprocess(input_image) input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model # move the input and model to GPU for speed if available if torch.cuda.is_available(): input_batch = input_batch.to('cuda') model_ft.to('cuda') with torch.no_grad(): output = model_ft(input_batch) # The output has unnormalized scores. To get probabilities, you can run a softmax on it. probabilities = torch.nn.functional.softmax(output[0], dim=0) # Show top categories per image top5_prob, top5_catid = torch.topk(probabilities, len(categories)) result = {} for i in range(top5_prob.size(0)): result[categories[top5_catid[i]]] = top5_prob[i].item() return result inputs = gr.inputs.Image(type='pil') outputs = gr.outputs.Label(type="confidences",num_top_classes=len(categories)) title = "表紙・裏表紙・その他のページの分類" description = "Vision Transformerを用いた表紙・裏表紙・その他のページの分類モデルです。" article = "<p style='text-align: center'>次のデータセットを使用しました。<a href='' target='_blank'>あああ</a></p>" examples = [ ['examples/other.jpg'], ['examples/front.jpg'], ["examples/page.jpg"], ["examples/page2.jpg"], ["examples/back.jpg"] ] gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, examples=examples, analytics_enabled=False).launch()