nakamura196 commited on
Commit
0fc716a
·
1 Parent(s): 32f787c

feat: initial commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.json filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ .venv
2
+ data
3
+ .DS_Store
4
+ __pycache__
5
+ .env
app.py CHANGED
@@ -1,64 +1,58 @@
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
 
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
 
 
 
25
 
26
- messages.append({"role": "user", "content": message})
 
27
 
28
- response = ""
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
41
 
 
 
 
 
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
-
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
+ import os
2
  import gradio as gr
3
+ from llama_index.core import StorageContext, load_index_from_storage, Settings
4
+ from llama_index.llms.azure_openai import AzureOpenAI
5
+ from llama_index.embeddings.azure_openai import AzureOpenAIEmbedding
6
+ from dotenv import load_dotenv
7
+
8
+ load_dotenv(override=True)
9
+
10
+ api_key = os.getenv("AZURE_OPENAI_API_KEY")
11
+ api_version = "2024-05-01-preview"
12
+ azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT")
13
+
14
+ llm = AzureOpenAI(
15
+ model="gpt-4o",
16
+ deployment_name="gpt-4o",
17
+ api_key=api_key,
18
+ azure_endpoint=azure_endpoint,
19
+ api_version=api_version,
20
+ )
21
 
22
+ # You need to deploy your own embedding model as well as your own chat completion model
23
+ embed_model = AzureOpenAIEmbedding(
24
+ model="text-embedding-3-small",
25
+ deployment_name="text-embedding-3-small",
26
+ api_key=api_key,
27
+ azure_endpoint=azure_endpoint,
28
+ api_version=api_version,
29
+ )
30
 
31
+ Settings.llm = llm
32
+ Settings.embed_model = embed_model
33
 
34
+ # rebuild storage context
35
+ storage_context = StorageContext.from_defaults(persist_dir="./index")
36
 
37
+ # load index
38
+ index = load_index_from_storage(storage_context)
 
 
 
 
 
 
39
 
40
+ query_engine = index.as_query_engine(similarity_top_k=10)
 
41
 
42
+ # Function to handle chat messages with history
43
+ def echo(message, history):
44
+ context = "\n".join([f"User: {user_msg}\nBot: {bot_msg}" for user_msg, bot_msg in history])
45
+ full_context = f"{context}\nUser: {message}"
46
+ response = query_engine.query(full_context).response
47
+ history.append((message, response))
48
+ return response # history
49
 
 
 
 
50
  demo = gr.ChatInterface(
51
+ fn=echo,
52
+ examples=[
53
+ "光源氏はどのような人物ですか?",
54
+ "夕顔はどのような人物ですか?"
55
+ ],
56
+ title="Llama Index Chatbot",
 
 
 
 
 
 
 
57
  )
58
+ demo.launch()
 
 
 
index/default__vector_store.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f7fe224b5643b9f72240d2512a9b9d8a2f667c604a76a515e43990bd6ac89881
3
+ size 56982497
index/docstore.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff15643f2195ab3def2669052b4e7b2a1f94907658cab0dc0a6d27860439da0d
3
+ size 11660400
index/graph_store.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e0a77744010862225c69da83c585f4f8a42fd551b044ce530dbb1eb6e16742c
3
+ size 18
index/image__vector_store.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d17ed74c1649a438e518a8dc56a7772913dfe1ea7a7605bce069c63872431455
3
+ size 72
index/index_store.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f99ab7691679df00c79231c7620b7b41e2b0eb374425547075a236beb35cd9d
3
+ size 137839
requirements.txt CHANGED
@@ -1 +1,7 @@
1
- huggingface_hub==0.25.2
 
 
 
 
 
 
 
1
+ gradio
2
+ requests
3
+ bs4
4
+ llama_index
5
+ llama-index-embeddings-azure-openai
6
+ llama-index-llms-azure-openai
7
+ python-dotenv
src/01_dwn.ipynb ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 1,
6
+ "metadata": {},
7
+ "outputs": [
8
+ {
9
+ "ename": "ModuleNotFoundError",
10
+ "evalue": "No module named 'bs4'",
11
+ "output_type": "error",
12
+ "traceback": [
13
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
14
+ "\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)",
15
+ "Cell \u001b[0;32mIn[1], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mrequests\u001b[39;00m\n\u001b[0;32m----> 2\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mbs4\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m BeautifulSoup\n\u001b[1;32m 3\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mos\u001b[39;00m\n",
16
+ "\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'bs4'"
17
+ ]
18
+ }
19
+ ],
20
+ "source": [
21
+ "import requests\n",
22
+ "from bs4 import BeautifulSoup\n",
23
+ "import os"
24
+ ]
25
+ },
26
+ {
27
+ "cell_type": "code",
28
+ "execution_count": null,
29
+ "metadata": {},
30
+ "outputs": [],
31
+ "source": [
32
+ "url = \"https://genji.dl.itc.u-tokyo.ac.jp/data/info.json\"\n",
33
+ "\n",
34
+ "response = requests.get(url).json()\n",
35
+ "\n",
36
+ "selections = response[\"selections\"]\n",
37
+ "\n",
38
+ "for selection in selections:\n",
39
+ "\n",
40
+ " members = selection[\"members\"]\n",
41
+ "\n",
42
+ " for member in members:\n",
43
+ "\n",
44
+ " aozora_urls = []\n",
45
+ "\n",
46
+ " for metadata in member[\"metadata\"]:\n",
47
+ "\n",
48
+ " if metadata[\"label\"] == \"aozora\":\n",
49
+ "\n",
50
+ " aozora_urls = metadata[\"value\"].split(\", \")\n",
51
+ "\n",
52
+ " for aozora_url in aozora_urls:\n",
53
+ "\n",
54
+ " filename = aozora_url.split(\"/\")[-1].split(\".\")[0]\n",
55
+ "\n",
56
+ " opath = f\"./data/text/{filename}.txt\"\n",
57
+ "\n",
58
+ " if os.path.exists(opath):\n",
59
+ " continue\n",
60
+ " # pass\n",
61
+ "\n",
62
+ " response = requests.get(aozora_url)\n",
63
+ "\n",
64
+ " response.encoding = response.apparent_encoding\n",
65
+ "\n",
66
+ " soup = BeautifulSoup(response.text, \"html.parser\")\n",
67
+ "\n",
68
+ " div = soup.find(\"div\", class_=\"main_text\") \n",
69
+ "\n",
70
+ " txt = div.get_text().strip()\n",
71
+ "\n",
72
+ " os.makedirs(os.path.dirname(opath), exist_ok=True)\n",
73
+ "\n",
74
+ " with open(opath, \"w\") as f:\n",
75
+ " f.write(txt)"
76
+ ]
77
+ },
78
+ {
79
+ "cell_type": "code",
80
+ "execution_count": null,
81
+ "metadata": {},
82
+ "outputs": [],
83
+ "source": []
84
+ }
85
+ ],
86
+ "metadata": {
87
+ "kernelspec": {
88
+ "display_name": ".venv",
89
+ "language": "python",
90
+ "name": "python3"
91
+ },
92
+ "language_info": {
93
+ "codemirror_mode": {
94
+ "name": "ipython",
95
+ "version": 3
96
+ },
97
+ "file_extension": ".py",
98
+ "mimetype": "text/x-python",
99
+ "name": "python",
100
+ "nbconvert_exporter": "python",
101
+ "pygments_lexer": "ipython3",
102
+ "version": "3.9.11"
103
+ }
104
+ },
105
+ "nbformat": 4,
106
+ "nbformat_minor": 2
107
+ }
src/02_llm.ipynb ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "metadata": {},
7
+ "outputs": [],
8
+ "source": [
9
+ "import os\n",
10
+ "from llama_index.llms.azure_openai import AzureOpenAI\n",
11
+ "from llama_index.embeddings.azure_openai import AzureOpenAIEmbedding\n",
12
+ "from llama_index.core import SimpleDirectoryReader, Settings, VectorStoreIndex"
13
+ ]
14
+ },
15
+ {
16
+ "cell_type": "code",
17
+ "execution_count": 16,
18
+ "metadata": {},
19
+ "outputs": [],
20
+ "source": [
21
+ "api_key = os.getenv(\"AZURE_OPENAI_API_KEY\")\n",
22
+ "api_version = \"2024-05-01-preview\"\n",
23
+ "azure_endpoint = os.getenv(\"AZURE_OPENAI_ENDPOINT\")"
24
+ ]
25
+ },
26
+ {
27
+ "cell_type": "code",
28
+ "execution_count": 17,
29
+ "metadata": {},
30
+ "outputs": [],
31
+ "source": [
32
+ "llm = AzureOpenAI(\n",
33
+ " model=\"gpt-4o\",\n",
34
+ " deployment_name=\"gpt-4o\",\n",
35
+ " api_key=api_key,\n",
36
+ " azure_endpoint=azure_endpoint,\n",
37
+ " api_version=api_version,\n",
38
+ ")"
39
+ ]
40
+ },
41
+ {
42
+ "cell_type": "code",
43
+ "execution_count": 18,
44
+ "metadata": {},
45
+ "outputs": [],
46
+ "source": [
47
+ "# You need to deploy your own embedding model as well as your own chat completion model\n",
48
+ "embed_model = AzureOpenAIEmbedding(\n",
49
+ " model=\"text-embedding-3-small\",\n",
50
+ " deployment_name=\"text-embedding-3-small\",\n",
51
+ " api_key=api_key,\n",
52
+ " azure_endpoint=azure_endpoint,\n",
53
+ " api_version=api_version,\n",
54
+ ")"
55
+ ]
56
+ },
57
+ {
58
+ "cell_type": "code",
59
+ "execution_count": 19,
60
+ "metadata": {},
61
+ "outputs": [],
62
+ "source": [
63
+ "Settings.llm = llm\n",
64
+ "Settings.embed_model = embed_model"
65
+ ]
66
+ },
67
+ {
68
+ "cell_type": "code",
69
+ "execution_count": 20,
70
+ "metadata": {},
71
+ "outputs": [],
72
+ "source": [
73
+ "# Data Source -> Documents化を行うStep\n",
74
+ "documents = SimpleDirectoryReader(\n",
75
+ " input_dir=\"./data/text\"\n",
76
+ ").load_data()"
77
+ ]
78
+ },
79
+ {
80
+ "cell_type": "code",
81
+ "execution_count": null,
82
+ "metadata": {},
83
+ "outputs": [],
84
+ "source": [
85
+ "index = VectorStoreIndex.from_documents(documents)"
86
+ ]
87
+ },
88
+ {
89
+ "cell_type": "code",
90
+ "execution_count": null,
91
+ "metadata": {},
92
+ "outputs": [],
93
+ "source": [
94
+ "index.storage_context.persist(persist_dir=\"../index\")"
95
+ ]
96
+ }
97
+ ],
98
+ "metadata": {
99
+ "kernelspec": {
100
+ "display_name": ".venv",
101
+ "language": "python",
102
+ "name": "python3"
103
+ },
104
+ "language_info": {
105
+ "codemirror_mode": {
106
+ "name": "ipython",
107
+ "version": 3
108
+ },
109
+ "file_extension": ".py",
110
+ "mimetype": "text/x-python",
111
+ "name": "python",
112
+ "nbconvert_exporter": "python",
113
+ "pygments_lexer": "ipython3",
114
+ "version": "3.9.11"
115
+ }
116
+ },
117
+ "nbformat": 4,
118
+ "nbformat_minor": 2
119
+ }