File size: 5,640 Bytes
0217f42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# core\n",
    "\n",
    "> Fill in a module description here"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#| default_exp core"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#| hide\n",
    "from nbdev.showdoc import *"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#| export\n",
    "import gradio as gr\n",
    "from Levenshtein import ratio\n",
    "import json\n",
    "import xml.etree.ElementTree as ET\n",
    "from tqdm import tqdm"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#| export\n",
    "class ApiClient:\n",
    "\n",
    "\n",
    "    def __init__(self, data_path: str):\n",
    "        DATA_PATH = data_path\n",
    "\n",
    "        with open(DATA_PATH, \"r\", encoding=\"utf-8\") as f:\n",
    "            documents_data = json.load(f)\n",
    "\n",
    "        self.documents_data = documents_data\n",
    "\n",
    "    def extract_text_from_lines(self, element):\n",
    "        \"\"\"本文タイプの要素からテキストを抽出する\"\"\"\n",
    "        lines = element.findall(\".//*[@type='本文']\")\n",
    "        return ''.join(line.text for line in lines)\n",
    "\n",
    "    def format_prediction_result(self, result):\n",
    "        \"\"\"予測結果を 'vol-page' 形式にフォーマットする\"\"\"\n",
    "        first_result = result[0]\n",
    "        return f'{first_result[\"vol\"]}-{first_result[\"page\"]}'\n",
    "\n",
    "\n",
    "    def search_similar_texts(self, query, selected_vols, top_n=5, xml_file_path=None):\n",
    "        \"\"\"テキストの類似検索を実行する関数\n",
    "\n",
    "        Args:\n",
    "            query (str): 検索クエリテキスト\n",
    "            selected_vols (list): 検索対象の巻のリスト\n",
    "            top_n (int, optional): 返す結果の数. デフォルトは5\n",
    "            xml_file (gradio.File, optional): 比較対象のXMLファイル\n",
    "\n",
    "        Returns:\n",
    "            list: 検索結果のリスト。XMLファイル処理時は[predict_results]、\n",
    "                通常検索時は[top_results]を返す\n",
    "        \"\"\"\n",
    "        if xml_file_path is not None:\n",
    "            \n",
    "            try:\n",
    "                with open(xml_file_path, \"r\", encoding=\"utf-8\") as f:\n",
    "                    xml_str = f.read()\n",
    "                    \n",
    "                root = ET.fromstring(xml_str)\n",
    "                \n",
    "                # ページ要素の取得\n",
    "                elements = root.findall(\".//*[@type='page']\")\n",
    "\n",
    "                # 予測実行\n",
    "                predict_results = {}\n",
    "                for i, element in tqdm(enumerate(elements, 1)):\n",
    "                    text = self.extract_text_from_lines(element)\n",
    "                    top_results = self.predict(text, selected_vols, 1)\n",
    "                    predict_results[str(i)] = self.format_prediction_result(top_results)\n",
    "\n",
    "                return [predict_results]\n",
    "        \n",
    "            except (ET.ParseError, FileNotFoundError, PermissionError) as e:\n",
    "                print(f\"XMLファイルの処理中にエラーが発生しました: {str(e)}\")\n",
    "                return [[], {}]\n",
    "        \n",
    "\n",
    "        top_results = self.predict(query, selected_vols, top_n)\n",
    "        \n",
    "        return [top_results] # , vol_percentages\n",
    "        \n",
    "\n",
    "    def predict(self, query, selected_vols, top_n=5):\n",
    "        \"\"\"テキストの類似度を計算し、上位の結果を返す\n",
    "\n",
    "        Args:\n",
    "            query (str): 検索クエリテキスト\n",
    "            selected_vols (list): 検索対象の巻のリスト\n",
    "            top_n (int, optional): 返す結果の数. デフォルトは5\n",
    "\n",
    "        Returns:\n",
    "            list: スコア順にソートされた上位n件の検索結果\n",
    "        \"\"\"\n",
    "        results = []\n",
    "        \n",
    "        for doc in self.documents_data:\n",
    "            # 選択された巻のみを検索対象とする\n",
    "            if not selected_vols or str(doc[\"vol\"]) in selected_vols:\n",
    "                score = ratio(query, doc[\"text\"])\n",
    "                results.append({\n",
    "                    \"vol\": doc[\"vol\"],\n",
    "                    \"page\": doc[\"page\"],\n",
    "                    \"score\": score,\n",
    "                    \"text\": doc[\"text\"]\n",
    "                })\n",
    "\n",
    "        results.sort(key=lambda x: x[\"score\"], reverse=True)\n",
    "        top_results = results[:top_n]  # top_nで指定された件数だけを取得\n",
    "\n",
    "        return top_results"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#| hide\n",
    "import nbdev; nbdev.nbdev_export()"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "python3",
   "language": "python",
   "name": "python3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}