File size: 8,013 Bytes
1981742
 
 
 
 
 
 
ffde3b6
 
 
 
1981742
ffde3b6
 
1981742
 
ffde3b6
1907e78
 
1981742
1907e78
 
 
 
 
 
 
 
1981742
 
ffde3b6
 
1981742
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffde3b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1907e78
ffde3b6
1981742
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffde3b6
 
 
 
 
 
 
 
 
 
 
 
 
 
1981742
ffde3b6
 
 
 
 
 
 
1981742
 
 
ffde3b6
 
 
 
 
 
1981742
 
 
ffde3b6
1981742
 
 
 
 
 
ffde3b6
4b129cb
6124561
1981742
 
7c62087
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import gradio as gr
import numpy as np
from PIL import Image
import os
from rtmdet import RTMDet
from parseq import PARSEQ
from yaml import safe_load
from ndl_parser import convert_to_xml_string3
from concurrent.futures import ThreadPoolExecutor
import xml.etree.ElementTree as ET
from reading_order.xy_cut.eval import eval_xml

from xml.dom import minidom
import re

# Model Heading and Description
model_heading = "NDL Kotenseki OCR-Lite Gradio App"
description = """
Upload an image or click an example image to use.

Examples:
1. 『竹取物語』上, 江戸前期. https://dl.ndl.go.jp/pid/1287221/1/2
2. 曲亭馬琴 作 ほか『人間万事賽翁馬 3巻』, 鶴喜, 寛政12. https://dl.ndl.go.jp/pid/10301438/1/17
"""

article = "This application is powered by NDL Kotenseki OCR-Lite. For more details, please visit the official repository: [NDL Kotenseki OCR-Lite GitHub Repository](https://github.com/ndl-lab/ndlkotenocr-lite)."

# <p style='text-align: center'><a href=\"https://github.com/ndl-lab/ndlkotenocr-lite\">https://github.com/ndl-lab/ndlkotenocr-lite</a>.</p>

image_path = [
    ['samples/digidepo_1287221_00000002.jpg'],
    ['samples/digidepo_10301438_0017.jpg']
]

# Functions to load models
def get_detector(weights_path, classes_path, device='cpu'):
    assert os.path.isfile(weights_path), f"Weight file not found: {weights_path}"
    assert os.path.isfile(classes_path), f"Classes file not found: {classes_path}"
    return RTMDet(model_path=weights_path,
                  class_mapping_path=classes_path,
                  score_threshold=0.3,
                  conf_thresold=0.3,
                  iou_threshold=0.3,
                  device=device)

def get_recognizer(weights_path, classes_path, device='cpu'):
    assert os.path.isfile(weights_path), f"Weight file not found: {weights_path}"
    assert os.path.isfile(classes_path), f"Classes file not found: {classes_path}"
    
    with open(classes_path, encoding="utf-8") as f:
        charlist = list(safe_load(f)["model"]["charset_train"])
    return PARSEQ(model_path=weights_path, charlist=charlist, device=device)

def create_txt(recognizer, root, img):
    alltextlist = []

    targetdflist=[]

    tatelinecnt=0
    alllinecnt=0

    with ThreadPoolExecutor(max_workers=4, thread_name_prefix="thread") as executor:
        for lineobj in root.findall(".//LINE"):
            xmin=int(lineobj.get("X"))
            ymin=int(lineobj.get("Y"))
            line_w=int(lineobj.get("WIDTH"))
            line_h=int(lineobj.get("HEIGHT"))
            if line_h>line_w:
                tatelinecnt+=1
            alllinecnt+=1
            lineimg=img[ymin:ymin+line_h,xmin:xmin+line_w,:]
            targetdflist.append(lineimg)
        resultlines = executor.map(recognizer.read, targetdflist)

        resultlines=list(resultlines)
        alltextlist.append("\n".join(resultlines))

        alltextstr=""
        for text in alltextlist:
            alltextstr+=text+"\n"
        return alltextstr


def create_xml(detections,classeslist,img_w,img_h,imgname, recognizer, img):
    resultobj=[dict(),dict()]
    resultobj[0][0]=list()
    for i in range(16):
        resultobj[1][i]=[]
    for det in detections:
        xmin,ymin,xmax,ymax=det["box"]
        conf=det["confidence"]
        if det["class_index"]==0:
            resultobj[0][0].append([xmin,ymin,xmax,ymax])
        resultobj[1][det["class_index"]].append([xmin,ymin,xmax,ymax,conf])

    xmlstr=convert_to_xml_string3(img_w, img_h, imgname, classeslist, resultobj,score_thr = 0.3,min_bbox_size= 5,use_block_ad= False)
    xmlstr="<OCRDATASET>"+xmlstr+"</OCRDATASET>"

    root = ET.fromstring(xmlstr)
    eval_xml(root, logger=None)

    targetdflist=[]

    tatelinecnt=0
    alllinecnt=0

    with ThreadPoolExecutor(max_workers=4, thread_name_prefix="thread") as executor:
        for lineobj in root.findall(".//LINE"):
            xmin=int(lineobj.get("X"))
            ymin=int(lineobj.get("Y"))
            line_w=int(lineobj.get("WIDTH"))
            line_h=int(lineobj.get("HEIGHT"))
            if line_h>line_w:
                tatelinecnt+=1
            alllinecnt+=1
            lineimg=img[ymin:ymin+line_h,xmin:xmin+line_w,:]
            targetdflist.append(lineimg)
        resultlines = executor.map(recognizer.read, targetdflist)
        resultlines=list(resultlines)

        for idx,lineobj in enumerate(root.findall(".//LINE")):
            lineobj.set("STRING",resultlines[idx])

    return root

def create_txt(root):
    alltextlist=[]

    for lineobj in root.findall(".//LINE"):
        alltextlist.append(lineobj.get("STRING"))

    return "\n".join(alltextlist)

def create_xmlstr(root):
    rough_string = ET.tostring(root, 'utf-8')
    reparsed = minidom.parseString(rough_string)
    pretty = re.sub(r"[\t ]+\n", "", reparsed.toprettyxml(indent="\t"))  # インデント後の不要な改行を削除
    pretty = pretty.replace(">\n\n\t<", ">\n\t<")  # 不要な空行を削除
    pretty = re.sub(r"\n\s*\n", "\n", pretty)  # 連続した改行(空白行を含む)を単一の改行に置換
    return pretty

def create_json(root):
    resjsonarray=[]

    img_w=int(root.find("PAGE").get("WIDTH"))
    img_h=int(root.find("PAGE").get("HEIGHT"))
    inputpath=root.find("PAGE").get("IMAGENAME")

    for idx,lineobj in enumerate(root.findall(".//LINE")):

        text = lineobj.get("STRING")

        xmin=int(lineobj.get("X"))
        ymin=int(lineobj.get("Y"))
        line_w=int(lineobj.get("WIDTH"))
        line_h=int(lineobj.get("HEIGHT"))
        try:
            conf=float(lineobj.get("CONF"))
        except:
            conf=0
        jsonobj={"boundingBox": [[xmin,ymin],[xmin,ymin+line_h],[xmin+line_w,ymin],[xmin+line_w,ymin+line_h]],
            "id": idx,"isVertical": "true","text": text,"isTextline": "true","confidence": conf}
        resjsonarray.append(jsonobj)

    alljsonobj={
        "contents":[resjsonarray],
        "imginfo": {
            "img_width": img_w,
            "img_height": img_h,
            "img_path":inputpath,
            "img_name":os.path.basename(inputpath)
        }
    }

    return alljsonobj

# Inference Function
def process(image_path: str):
    try:
        # Load the models
        detector = get_detector(
            weights_path="model/rtmdet-s-1280x1280.onnx",
            classes_path="config/ndl.yaml",
            device="cpu"
        )
        recognizer = get_recognizer(
            weights_path="model/parseq-ndl-32x384-tiny-10.onnx",
            classes_path="config/NDLmoji.yaml",
            device="cpu"
        )

        # Load image
        pil_image = Image.open(image_path).convert('RGB')
        npimg = np.array(pil_image)

        # Object detection
        detections = detector.detect(npimg)
        classeslist=list(detector.classes.values())

        img_h,img_w=npimg.shape[:2]
        imgname=os.path.basename(image_path)

        root = create_xml(detections, classeslist, img_w, img_h, imgname, recognizer, npimg)

        alltext = create_txt(root)

        result_json = create_json(root)

        pil_image =detector.draw_detections(npimg, detections=detections)

        return pil_image, alltext, create_xmlstr(root), result_json
    except Exception as e:

        return [
            Image.fromarray(np.zeros((100, 100), dtype=np.uint8)),
            "Error",
            "Error",
            {}
        ]

# Gradio Inputs and Outputs
inputs_image = gr.Image(type="filepath", label="Input Image")
outputs_image = [
    gr.Image(type="pil", label="Output Image"),
    gr.TextArea(label="Output Text"),
    gr.TextArea(label="Output XML"),
    gr.JSON(label="Output JSON")
]

# Gradio Interface
demo = gr.Interface(
    fn=process,
    inputs=inputs_image,
    outputs=outputs_image,
    title=model_heading,
    description=description,
    examples=image_path,
    article=article,
    cache_examples=False,
    # flagging_mode="never"
    allow_flagging="never"
)

demo.launch(share=False, server_name="0.0.0.0")