Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from PIL import Image | |
import json | |
# Model | |
model = torch.hub.load('ultralytics/yolov5', 'custom', path='best.pt', source="local") | |
def yolo(im, size=1024): | |
g = (size / max(im.size)) # gain | |
im = im.resize((int(x * g) for x in im.size), resample=Image.Resampling.LANCZOS) # resize | |
results = model(im) # inference | |
results.render() | |
df = results.pandas().xyxy[0].to_json(orient="records") | |
res = json.loads(df) | |
return [ | |
Image.fromarray(results.imgs[0]), | |
res | |
] | |
inputs = gr.Image(type='pil', label="Original Image") | |
outputs = [ | |
gr.Image(type="pil", label="Output Image"), | |
gr.JSON(label="Output JSON") | |
] | |
title = "YOLOv5 NDL-DocL Datasets" | |
description = "YOLOv5 NDL-DocL Datasets Gradio demo for object detection. Upload an image or click an example image to use." | |
article = "<p style='text-align: center'>YOLOv5 NDL-DocL Datasets is an object detection model trained on the <a href=\"https://github.com/ndl-lab/layout-dataset\">NDL-DocL Datasets</a>.</p>" | |
examples = [['『源氏物語』(東京大学総合図書館所蔵).jpg'], ['『源氏物語』(京都大学所蔵).jpg'], ['『平家物語』(国文学研究資料館提供).jpg']] | |
demo = gr.Interface(yolo, inputs, outputs, title=title, description=description, article=article,examples=examples) | |
demo.launch(share=False) | |