Spaces:
Runtime error
Runtime error
import gradio as gr | |
from PIL import Image | |
import yolov5 | |
import json | |
model = yolov5.load("nakamura196/yolov5-ndl-layout") | |
def yolo(im): | |
results = model(im) # inference | |
df = results.pandas().xyxy[0].to_json(orient="records") | |
res = json.loads(df) | |
im_with_boxes = results.render()[0] # results.render() returns a list of images | |
# Convert the numpy array back to an image | |
output_image = Image.fromarray(im_with_boxes) | |
return [ | |
output_image, | |
res | |
] | |
inputs = gr.Image(type='pil', label="Original Image") | |
outputs = [ | |
gr.Image(type="pil", label="Output Image"), | |
gr.JSON() | |
] | |
title = "YOLOv5 NDL-DocL Datasets" | |
description = "YOLOv5 NDL-DocL Datasets Gradio demo for object detection. Upload an image or click an example image to use." | |
article = "<p style='text-align: center'>YOLOv5 NDL-DocL Datasets is an object detection model trained on the <a href=\"https://github.com/ndl-lab/layout-dataset\">NDL-DocL Datasets</a>.</p>" | |
examples = [ | |
['『源氏物語』(東京大学総合図書館所蔵).jpg'], | |
['『源氏物語』(京都大学所蔵).jpg'], | |
['『平家物語』(国文学研究資料館提供).jpg'] | |
] | |
demo = gr.Interface(yolo, inputs, outputs, title=title, description=description, article=article, examples=examples) | |
demo.launch(share=False) |