Spaces:
Runtime error
Runtime error
nakamura196
commited on
Commit
•
2417fbd
1
Parent(s):
65450c1
feat: update v8
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitignore +2 -3
- README.md +1 -1
- app.py +52 -25
- init.sh +0 -3
- best.pt → model_- 19 may 2024 15_13.pt +2 -2
- requirements.txt +1 -5
- ultralytics/yolov5/export.py +0 -559
- ultralytics/yolov5/hubconf.py +0 -143
- ultralytics/yolov5/models/__init__.py +0 -0
- ultralytics/yolov5/models/common.py +0 -684
- ultralytics/yolov5/models/experimental.py +0 -121
- ultralytics/yolov5/models/hub/anchors.yaml +0 -59
- ultralytics/yolov5/models/hub/yolov3-spp.yaml +0 -51
- ultralytics/yolov5/models/hub/yolov3-tiny.yaml +0 -41
- ultralytics/yolov5/models/hub/yolov3.yaml +0 -51
- ultralytics/yolov5/models/hub/yolov5-bifpn.yaml +0 -48
- ultralytics/yolov5/models/hub/yolov5-fpn.yaml +0 -42
- ultralytics/yolov5/models/hub/yolov5-p2.yaml +0 -54
- ultralytics/yolov5/models/hub/yolov5-p34.yaml +0 -41
- ultralytics/yolov5/models/hub/yolov5-p6.yaml +0 -56
- ultralytics/yolov5/models/hub/yolov5-p7.yaml +0 -67
- ultralytics/yolov5/models/hub/yolov5-panet.yaml +0 -48
- ultralytics/yolov5/models/hub/yolov5l6.yaml +0 -60
- ultralytics/yolov5/models/hub/yolov5m6.yaml +0 -60
- ultralytics/yolov5/models/hub/yolov5n6.yaml +0 -60
- ultralytics/yolov5/models/hub/yolov5s-ghost.yaml +0 -48
- ultralytics/yolov5/models/hub/yolov5s-transformer.yaml +0 -48
- ultralytics/yolov5/models/hub/yolov5s6.yaml +0 -60
- ultralytics/yolov5/models/hub/yolov5x6.yaml +0 -60
- ultralytics/yolov5/models/tf.py +0 -466
- ultralytics/yolov5/models/yolo.py +0 -329
- ultralytics/yolov5/models/yolov5l.yaml +0 -48
- ultralytics/yolov5/models/yolov5m.yaml +0 -48
- ultralytics/yolov5/models/yolov5n.yaml +0 -48
- ultralytics/yolov5/models/yolov5s.yaml +0 -48
- ultralytics/yolov5/models/yolov5x.yaml +0 -48
- ultralytics/yolov5/utils/__init__.py +0 -36
- ultralytics/yolov5/utils/activations.py +0 -101
- ultralytics/yolov5/utils/augmentations.py +0 -277
- ultralytics/yolov5/utils/autoanchor.py +0 -170
- ultralytics/yolov5/utils/autobatch.py +0 -58
- ultralytics/yolov5/utils/aws/__init__.py +0 -0
- ultralytics/yolov5/utils/aws/mime.sh +0 -26
- ultralytics/yolov5/utils/aws/resume.py +0 -40
- ultralytics/yolov5/utils/aws/userdata.sh +0 -27
- ultralytics/yolov5/utils/benchmarks.py +0 -104
- ultralytics/yolov5/utils/callbacks.py +0 -78
- ultralytics/yolov5/utils/datasets.py +0 -1039
- ultralytics/yolov5/utils/downloads.py +0 -153
- ultralytics/yolov5/utils/flask_rest_api/README.md +0 -73
.gitignore
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
.DS_Store
|
2 |
-
|
3 |
# __pycache__
|
4 |
gradio_queue.db
|
5 |
__pycache__
|
6 |
-
.venv
|
7 |
-
__pycache__
|
|
|
1 |
.DS_Store
|
2 |
+
yolo*.pt
|
3 |
# __pycache__
|
4 |
gradio_queue.db
|
5 |
__pycache__
|
6 |
+
.venv
|
|
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
emoji: 🐢
|
4 |
colorFrom: indigo
|
5 |
colorTo: red
|
|
|
1 |
---
|
2 |
+
title: Yolov8 Ndl Layout
|
3 |
emoji: 🐢
|
4 |
colorFrom: indigo
|
5 |
colorTo: red
|
app.py
CHANGED
@@ -1,38 +1,65 @@
|
|
1 |
import gradio as gr
|
2 |
-
import torch
|
3 |
-
from PIL import Image
|
4 |
import json
|
5 |
|
6 |
-
|
7 |
-
model = torch.hub.load('ultralytics/yolov5', 'custom', path='best.pt', source="local")
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
|
13 |
-
|
14 |
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
|
18 |
-
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
|
|
|
|
|
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
gr.Image(type="
|
29 |
-
gr.
|
|
|
30 |
]
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
|
37 |
-
demo = gr.Interface(yolo, inputs, outputs, title=title, description=description, article=article,examples=examples)
|
38 |
-
demo.launch(share=False)
|
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
import json
|
3 |
|
4 |
+
from ultralyticsplus import YOLO, render_result
|
|
|
5 |
|
6 |
+
# Model Heading and Description
|
7 |
+
model_heading = "YOLOv8 NDL-DocL Datasets"
|
8 |
+
description = """YOLOv8 NDL-DocL Datasets Gradio demo for object detection. Upload an image or click an example image to use."""
|
9 |
|
10 |
+
article = "<p style='text-align: center'>YOLOv5 NDL-DocL Datasets is an object detection model trained on the <a href=\"https://github.com/ndl-lab/layout-dataset\">NDL-DocL Datasets</a>.</p>"
|
11 |
|
12 |
+
image_path= [
|
13 |
+
|
14 |
+
['『源氏物語』(東京大学総合図書館所蔵).jpg', 0.25, 0.45],
|
15 |
+
['『源氏物語』(京都大学所蔵).jpg', 0.25, 0.45],
|
16 |
+
['『平家物語』(国文学研究資料館提供).jpg', 0.25, 0.45]
|
17 |
+
]
|
18 |
|
19 |
+
# Load YOLO model
|
20 |
+
model = YOLO('model_- 19 may 2024 15_13.pt')
|
21 |
|
22 |
+
def yolov8_img_inference(
|
23 |
+
image: gr.Image = None,
|
24 |
+
conf_threshold: gr.Slider = 0.25,
|
25 |
+
iou_threshold: gr.Slider = 0.45,
|
26 |
+
):
|
27 |
+
"""
|
28 |
+
YOLOv8 inference function
|
29 |
+
Args:
|
30 |
+
image: Input image
|
31 |
+
conf_threshold: Confidence threshold
|
32 |
+
iou_threshold: IOU threshold
|
33 |
+
Returns:
|
34 |
+
Rendered image
|
35 |
+
"""
|
36 |
+
results = model.predict(image, conf=conf_threshold, iou=iou_threshold)
|
37 |
+
render = render_result(model=model, image=image, result=results[0])
|
38 |
|
39 |
+
json_data = json.loads(results[0].tojson())
|
40 |
+
|
41 |
+
return render, json_data
|
42 |
|
43 |
+
|
44 |
+
inputs_image = [
|
45 |
+
gr.Image(type="filepath", label="Input Image"),
|
46 |
+
gr.Slider(minimum=0.0, maximum=1.0, value=0.25, step=0.05, label="Confidence Threshold"),
|
47 |
+
gr.Slider(minimum=0.0, maximum=1.0, value=0.45, step=0.05, label="IOU Threshold"),
|
48 |
]
|
49 |
|
50 |
+
outputs_image =[
|
51 |
+
gr.Image(type="filepath", label="Output Image"),
|
52 |
+
gr.JSON(label="Output JSON")
|
53 |
+
]
|
54 |
+
demo = gr.Interface(
|
55 |
+
fn=yolov8_img_inference,
|
56 |
+
inputs=inputs_image,
|
57 |
+
outputs=outputs_image,
|
58 |
+
title=model_heading,
|
59 |
+
description=description,
|
60 |
+
examples=image_path,
|
61 |
+
article=article,
|
62 |
+
cache_examples=False
|
63 |
+
)
|
64 |
|
65 |
+
demo.launch(share=False)
|
|
|
|
init.sh
CHANGED
@@ -1,6 +1,3 @@
|
|
1 |
-
rm best.pt
|
2 |
-
gdown https://drive.google.com/uc?id=1DduqMfElGLPYWZTbrEO8F3qn6VPOZDPM
|
3 |
-
|
4 |
wget https://iiif.dl.itc.u-tokyo.ac.jp/iiif/genji/TIFF/A00_6587/01/01_0004.tif/full/1024,/0/default.jpg -O "『源氏物語』(東京大学総合図書館所蔵).jpg"
|
5 |
|
6 |
wget https://rmda.kulib.kyoto-u.ac.jp/iiif/RB00007030/01/RB00007030_00003_0.ptif/full/1024,/0/default.jpg -O "『源氏物語』(京都大学所蔵).jpg"
|
|
|
|
|
|
|
|
|
1 |
wget https://iiif.dl.itc.u-tokyo.ac.jp/iiif/genji/TIFF/A00_6587/01/01_0004.tif/full/1024,/0/default.jpg -O "『源氏物語』(東京大学総合図書館所蔵).jpg"
|
2 |
|
3 |
wget https://rmda.kulib.kyoto-u.ac.jp/iiif/RB00007030/01/RB00007030_00003_0.ptif/full/1024,/0/default.jpg -O "『源氏物語』(京都大学所蔵).jpg"
|
best.pt → model_- 19 may 2024 15_13.pt
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8acb10e585c68b31142f2f4470606da52ce054ab467368b6bfe22ca547620e12
|
3 |
+
size 136737193
|
requirements.txt
CHANGED
@@ -1,5 +1 @@
|
|
1 |
-
|
2 |
-
Pillow
|
3 |
-
opencv-python
|
4 |
-
torchvision
|
5 |
-
seaborn
|
|
|
1 |
+
ultralyticsplus
|
|
|
|
|
|
|
|
ultralytics/yolov5/export.py
DELETED
@@ -1,559 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
"""
|
3 |
-
Export a YOLOv5 PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit
|
4 |
-
|
5 |
-
Format | `export.py --include` | Model
|
6 |
-
--- | --- | ---
|
7 |
-
PyTorch | - | yolov5s.pt
|
8 |
-
TorchScript | `torchscript` | yolov5s.torchscript
|
9 |
-
ONNX | `onnx` | yolov5s.onnx
|
10 |
-
OpenVINO | `openvino` | yolov5s_openvino_model/
|
11 |
-
TensorRT | `engine` | yolov5s.engine
|
12 |
-
CoreML | `coreml` | yolov5s.mlmodel
|
13 |
-
TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/
|
14 |
-
TensorFlow GraphDef | `pb` | yolov5s.pb
|
15 |
-
TensorFlow Lite | `tflite` | yolov5s.tflite
|
16 |
-
TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite
|
17 |
-
TensorFlow.js | `tfjs` | yolov5s_web_model/
|
18 |
-
|
19 |
-
Requirements:
|
20 |
-
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU
|
21 |
-
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU
|
22 |
-
|
23 |
-
Usage:
|
24 |
-
$ python path/to/export.py --weights yolov5s.pt --include torchscript onnx openvino engine coreml tflite ...
|
25 |
-
|
26 |
-
Inference:
|
27 |
-
$ python path/to/detect.py --weights yolov5s.pt # PyTorch
|
28 |
-
yolov5s.torchscript # TorchScript
|
29 |
-
yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
|
30 |
-
yolov5s.xml # OpenVINO
|
31 |
-
yolov5s.engine # TensorRT
|
32 |
-
yolov5s.mlmodel # CoreML (MacOS-only)
|
33 |
-
yolov5s_saved_model # TensorFlow SavedModel
|
34 |
-
yolov5s.pb # TensorFlow GraphDef
|
35 |
-
yolov5s.tflite # TensorFlow Lite
|
36 |
-
yolov5s_edgetpu.tflite # TensorFlow Edge TPU
|
37 |
-
|
38 |
-
TensorFlow.js:
|
39 |
-
$ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example
|
40 |
-
$ npm install
|
41 |
-
$ ln -s ../../yolov5/yolov5s_web_model public/yolov5s_web_model
|
42 |
-
$ npm start
|
43 |
-
"""
|
44 |
-
|
45 |
-
import argparse
|
46 |
-
import json
|
47 |
-
import os
|
48 |
-
import platform
|
49 |
-
import subprocess
|
50 |
-
import sys
|
51 |
-
import time
|
52 |
-
import warnings
|
53 |
-
from pathlib import Path
|
54 |
-
|
55 |
-
import pandas as pd
|
56 |
-
import torch
|
57 |
-
import torch.nn as nn
|
58 |
-
from torch.utils.mobile_optimizer import optimize_for_mobile
|
59 |
-
|
60 |
-
FILE = Path(__file__).resolve()
|
61 |
-
ROOT = FILE.parents[0] # YOLOv5 root directory
|
62 |
-
if str(ROOT) not in sys.path:
|
63 |
-
sys.path.append(str(ROOT)) # add ROOT to PATH
|
64 |
-
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
65 |
-
|
66 |
-
from models.common import Conv
|
67 |
-
from models.experimental import attempt_load
|
68 |
-
from models.yolo import Detect
|
69 |
-
from utils.activations import SiLU
|
70 |
-
from utils.datasets import LoadImages
|
71 |
-
from utils.general import (LOGGER, check_dataset, check_img_size, check_requirements, check_version, colorstr,
|
72 |
-
file_size, print_args, url2file)
|
73 |
-
from utils.torch_utils import select_device
|
74 |
-
|
75 |
-
|
76 |
-
def export_formats():
|
77 |
-
# YOLOv5 export formats
|
78 |
-
x = [['PyTorch', '-', '.pt', True],
|
79 |
-
['TorchScript', 'torchscript', '.torchscript', True],
|
80 |
-
['ONNX', 'onnx', '.onnx', True],
|
81 |
-
['OpenVINO', 'openvino', '_openvino_model', False],
|
82 |
-
['TensorRT', 'engine', '.engine', True],
|
83 |
-
['CoreML', 'coreml', '.mlmodel', False],
|
84 |
-
['TensorFlow SavedModel', 'saved_model', '_saved_model', True],
|
85 |
-
['TensorFlow GraphDef', 'pb', '.pb', True],
|
86 |
-
['TensorFlow Lite', 'tflite', '.tflite', False],
|
87 |
-
['TensorFlow Edge TPU', 'edgetpu', '_edgetpu.tflite', False],
|
88 |
-
['TensorFlow.js', 'tfjs', '_web_model', False]]
|
89 |
-
return pd.DataFrame(x, columns=['Format', 'Argument', 'Suffix', 'GPU'])
|
90 |
-
|
91 |
-
|
92 |
-
def export_torchscript(model, im, file, optimize, prefix=colorstr('TorchScript:')):
|
93 |
-
# YOLOv5 TorchScript model export
|
94 |
-
try:
|
95 |
-
LOGGER.info(f'\n{prefix} starting export with torch {torch.__version__}...')
|
96 |
-
f = file.with_suffix('.torchscript')
|
97 |
-
|
98 |
-
ts = torch.jit.trace(model, im, strict=False)
|
99 |
-
d = {"shape": im.shape, "stride": int(max(model.stride)), "names": model.names}
|
100 |
-
extra_files = {'config.txt': json.dumps(d)} # torch._C.ExtraFilesMap()
|
101 |
-
if optimize: # https://pytorch.org/tutorials/recipes/mobile_interpreter.html
|
102 |
-
optimize_for_mobile(ts)._save_for_lite_interpreter(str(f), _extra_files=extra_files)
|
103 |
-
else:
|
104 |
-
ts.save(str(f), _extra_files=extra_files)
|
105 |
-
|
106 |
-
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
107 |
-
return f
|
108 |
-
except Exception as e:
|
109 |
-
LOGGER.info(f'{prefix} export failure: {e}')
|
110 |
-
|
111 |
-
|
112 |
-
def export_onnx(model, im, file, opset, train, dynamic, simplify, prefix=colorstr('ONNX:')):
|
113 |
-
# YOLOv5 ONNX export
|
114 |
-
try:
|
115 |
-
check_requirements(('onnx',))
|
116 |
-
import onnx
|
117 |
-
|
118 |
-
LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__}...')
|
119 |
-
f = file.with_suffix('.onnx')
|
120 |
-
|
121 |
-
torch.onnx.export(model, im, f, verbose=False, opset_version=opset,
|
122 |
-
training=torch.onnx.TrainingMode.TRAINING if train else torch.onnx.TrainingMode.EVAL,
|
123 |
-
do_constant_folding=not train,
|
124 |
-
input_names=['images'],
|
125 |
-
output_names=['output'],
|
126 |
-
dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # shape(1,3,640,640)
|
127 |
-
'output': {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
|
128 |
-
} if dynamic else None)
|
129 |
-
|
130 |
-
# Checks
|
131 |
-
model_onnx = onnx.load(f) # load onnx model
|
132 |
-
onnx.checker.check_model(model_onnx) # check onnx model
|
133 |
-
# LOGGER.info(onnx.helper.printable_graph(model_onnx.graph)) # print
|
134 |
-
|
135 |
-
# Simplify
|
136 |
-
if simplify:
|
137 |
-
try:
|
138 |
-
check_requirements(('onnx-simplifier',))
|
139 |
-
import onnxsim
|
140 |
-
|
141 |
-
LOGGER.info(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
|
142 |
-
model_onnx, check = onnxsim.simplify(
|
143 |
-
model_onnx,
|
144 |
-
dynamic_input_shape=dynamic,
|
145 |
-
input_shapes={'images': list(im.shape)} if dynamic else None)
|
146 |
-
assert check, 'assert check failed'
|
147 |
-
onnx.save(model_onnx, f)
|
148 |
-
except Exception as e:
|
149 |
-
LOGGER.info(f'{prefix} simplifier failure: {e}')
|
150 |
-
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
151 |
-
return f
|
152 |
-
except Exception as e:
|
153 |
-
LOGGER.info(f'{prefix} export failure: {e}')
|
154 |
-
|
155 |
-
|
156 |
-
def export_openvino(model, im, file, prefix=colorstr('OpenVINO:')):
|
157 |
-
# YOLOv5 OpenVINO export
|
158 |
-
try:
|
159 |
-
check_requirements(('openvino-dev',)) # requires openvino-dev: https://pypi.org/project/openvino-dev/
|
160 |
-
import openvino.inference_engine as ie
|
161 |
-
|
162 |
-
LOGGER.info(f'\n{prefix} starting export with openvino {ie.__version__}...')
|
163 |
-
f = str(file).replace('.pt', '_openvino_model' + os.sep)
|
164 |
-
|
165 |
-
cmd = f"mo --input_model {file.with_suffix('.onnx')} --output_dir {f}"
|
166 |
-
subprocess.check_output(cmd, shell=True)
|
167 |
-
|
168 |
-
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
169 |
-
return f
|
170 |
-
except Exception as e:
|
171 |
-
LOGGER.info(f'\n{prefix} export failure: {e}')
|
172 |
-
|
173 |
-
|
174 |
-
def export_coreml(model, im, file, prefix=colorstr('CoreML:')):
|
175 |
-
# YOLOv5 CoreML export
|
176 |
-
try:
|
177 |
-
check_requirements(('coremltools',))
|
178 |
-
import coremltools as ct
|
179 |
-
|
180 |
-
LOGGER.info(f'\n{prefix} starting export with coremltools {ct.__version__}...')
|
181 |
-
f = file.with_suffix('.mlmodel')
|
182 |
-
|
183 |
-
ts = torch.jit.trace(model, im, strict=False) # TorchScript model
|
184 |
-
ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=im.shape, scale=1 / 255, bias=[0, 0, 0])])
|
185 |
-
ct_model.save(f)
|
186 |
-
|
187 |
-
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
188 |
-
return ct_model, f
|
189 |
-
except Exception as e:
|
190 |
-
LOGGER.info(f'\n{prefix} export failure: {e}')
|
191 |
-
return None, None
|
192 |
-
|
193 |
-
|
194 |
-
def export_engine(model, im, file, train, half, simplify, workspace=4, verbose=False, prefix=colorstr('TensorRT:')):
|
195 |
-
# YOLOv5 TensorRT export https://developer.nvidia.com/tensorrt
|
196 |
-
try:
|
197 |
-
check_requirements(('tensorrt',))
|
198 |
-
import tensorrt as trt
|
199 |
-
|
200 |
-
if trt.__version__[0] == '7': # TensorRT 7 handling https://github.com/ultralytics/yolov5/issues/6012
|
201 |
-
grid = model.model[-1].anchor_grid
|
202 |
-
model.model[-1].anchor_grid = [a[..., :1, :1, :] for a in grid]
|
203 |
-
export_onnx(model, im, file, 12, train, False, simplify) # opset 12
|
204 |
-
model.model[-1].anchor_grid = grid
|
205 |
-
else: # TensorRT >= 8
|
206 |
-
check_version(trt.__version__, '8.0.0', hard=True) # require tensorrt>=8.0.0
|
207 |
-
export_onnx(model, im, file, 13, train, False, simplify) # opset 13
|
208 |
-
onnx = file.with_suffix('.onnx')
|
209 |
-
|
210 |
-
LOGGER.info(f'\n{prefix} starting export with TensorRT {trt.__version__}...')
|
211 |
-
assert im.device.type != 'cpu', 'export running on CPU but must be on GPU, i.e. `python export.py --device 0`'
|
212 |
-
assert onnx.exists(), f'failed to export ONNX file: {onnx}'
|
213 |
-
f = file.with_suffix('.engine') # TensorRT engine file
|
214 |
-
logger = trt.Logger(trt.Logger.INFO)
|
215 |
-
if verbose:
|
216 |
-
logger.min_severity = trt.Logger.Severity.VERBOSE
|
217 |
-
|
218 |
-
builder = trt.Builder(logger)
|
219 |
-
config = builder.create_builder_config()
|
220 |
-
config.max_workspace_size = workspace * 1 << 30
|
221 |
-
# config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace << 30) # fix TRT 8.4 deprecation notice
|
222 |
-
|
223 |
-
flag = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
|
224 |
-
network = builder.create_network(flag)
|
225 |
-
parser = trt.OnnxParser(network, logger)
|
226 |
-
if not parser.parse_from_file(str(onnx)):
|
227 |
-
raise RuntimeError(f'failed to load ONNX file: {onnx}')
|
228 |
-
|
229 |
-
inputs = [network.get_input(i) for i in range(network.num_inputs)]
|
230 |
-
outputs = [network.get_output(i) for i in range(network.num_outputs)]
|
231 |
-
LOGGER.info(f'{prefix} Network Description:')
|
232 |
-
for inp in inputs:
|
233 |
-
LOGGER.info(f'{prefix}\tinput "{inp.name}" with shape {inp.shape} and dtype {inp.dtype}')
|
234 |
-
for out in outputs:
|
235 |
-
LOGGER.info(f'{prefix}\toutput "{out.name}" with shape {out.shape} and dtype {out.dtype}')
|
236 |
-
|
237 |
-
LOGGER.info(f'{prefix} building FP{16 if builder.platform_has_fast_fp16 else 32} engine in {f}')
|
238 |
-
if builder.platform_has_fast_fp16:
|
239 |
-
config.set_flag(trt.BuilderFlag.FP16)
|
240 |
-
with builder.build_engine(network, config) as engine, open(f, 'wb') as t:
|
241 |
-
t.write(engine.serialize())
|
242 |
-
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
243 |
-
return f
|
244 |
-
except Exception as e:
|
245 |
-
LOGGER.info(f'\n{prefix} export failure: {e}')
|
246 |
-
|
247 |
-
|
248 |
-
def export_saved_model(model, im, file, dynamic,
|
249 |
-
tf_nms=False, agnostic_nms=False, topk_per_class=100, topk_all=100, iou_thres=0.45,
|
250 |
-
conf_thres=0.25, keras=False, prefix=colorstr('TensorFlow SavedModel:')):
|
251 |
-
# YOLOv5 TensorFlow SavedModel export
|
252 |
-
try:
|
253 |
-
import tensorflow as tf
|
254 |
-
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
|
255 |
-
|
256 |
-
from models.tf import TFDetect, TFModel
|
257 |
-
|
258 |
-
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
|
259 |
-
f = str(file).replace('.pt', '_saved_model')
|
260 |
-
batch_size, ch, *imgsz = list(im.shape) # BCHW
|
261 |
-
|
262 |
-
tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
|
263 |
-
im = tf.zeros((batch_size, *imgsz, ch)) # BHWC order for TensorFlow
|
264 |
-
_ = tf_model.predict(im, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
|
265 |
-
inputs = tf.keras.Input(shape=(*imgsz, ch), batch_size=None if dynamic else batch_size)
|
266 |
-
outputs = tf_model.predict(inputs, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
|
267 |
-
keras_model = tf.keras.Model(inputs=inputs, outputs=outputs)
|
268 |
-
keras_model.trainable = False
|
269 |
-
keras_model.summary()
|
270 |
-
if keras:
|
271 |
-
keras_model.save(f, save_format='tf')
|
272 |
-
else:
|
273 |
-
m = tf.function(lambda x: keras_model(x)) # full model
|
274 |
-
spec = tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype)
|
275 |
-
m = m.get_concrete_function(spec)
|
276 |
-
frozen_func = convert_variables_to_constants_v2(m)
|
277 |
-
tfm = tf.Module()
|
278 |
-
tfm.__call__ = tf.function(lambda x: frozen_func(x)[0], [spec])
|
279 |
-
tfm.__call__(im)
|
280 |
-
tf.saved_model.save(
|
281 |
-
tfm,
|
282 |
-
f,
|
283 |
-
options=tf.saved_model.SaveOptions(experimental_custom_gradients=False) if
|
284 |
-
check_version(tf.__version__, '2.6') else tf.saved_model.SaveOptions())
|
285 |
-
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
286 |
-
return keras_model, f
|
287 |
-
except Exception as e:
|
288 |
-
LOGGER.info(f'\n{prefix} export failure: {e}')
|
289 |
-
return None, None
|
290 |
-
|
291 |
-
|
292 |
-
def export_pb(keras_model, im, file, prefix=colorstr('TensorFlow GraphDef:')):
|
293 |
-
# YOLOv5 TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow
|
294 |
-
try:
|
295 |
-
import tensorflow as tf
|
296 |
-
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
|
297 |
-
|
298 |
-
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
|
299 |
-
f = file.with_suffix('.pb')
|
300 |
-
|
301 |
-
m = tf.function(lambda x: keras_model(x)) # full model
|
302 |
-
m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype))
|
303 |
-
frozen_func = convert_variables_to_constants_v2(m)
|
304 |
-
frozen_func.graph.as_graph_def()
|
305 |
-
tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False)
|
306 |
-
|
307 |
-
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
308 |
-
return f
|
309 |
-
except Exception as e:
|
310 |
-
LOGGER.info(f'\n{prefix} export failure: {e}')
|
311 |
-
|
312 |
-
|
313 |
-
def export_tflite(keras_model, im, file, int8, data, ncalib, prefix=colorstr('TensorFlow Lite:')):
|
314 |
-
# YOLOv5 TensorFlow Lite export
|
315 |
-
try:
|
316 |
-
import tensorflow as tf
|
317 |
-
|
318 |
-
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
|
319 |
-
batch_size, ch, *imgsz = list(im.shape) # BCHW
|
320 |
-
f = str(file).replace('.pt', '-fp16.tflite')
|
321 |
-
|
322 |
-
converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
|
323 |
-
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
|
324 |
-
converter.target_spec.supported_types = [tf.float16]
|
325 |
-
converter.optimizations = [tf.lite.Optimize.DEFAULT]
|
326 |
-
if int8:
|
327 |
-
from models.tf import representative_dataset_gen
|
328 |
-
dataset = LoadImages(check_dataset(data)['train'], img_size=imgsz, auto=False) # representative data
|
329 |
-
converter.representative_dataset = lambda: representative_dataset_gen(dataset, ncalib)
|
330 |
-
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
|
331 |
-
converter.target_spec.supported_types = []
|
332 |
-
converter.inference_input_type = tf.uint8 # or tf.int8
|
333 |
-
converter.inference_output_type = tf.uint8 # or tf.int8
|
334 |
-
converter.experimental_new_quantizer = True
|
335 |
-
f = str(file).replace('.pt', '-int8.tflite')
|
336 |
-
|
337 |
-
tflite_model = converter.convert()
|
338 |
-
open(f, "wb").write(tflite_model)
|
339 |
-
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
340 |
-
return f
|
341 |
-
except Exception as e:
|
342 |
-
LOGGER.info(f'\n{prefix} export failure: {e}')
|
343 |
-
|
344 |
-
|
345 |
-
def export_edgetpu(keras_model, im, file, prefix=colorstr('Edge TPU:')):
|
346 |
-
# YOLOv5 Edge TPU export https://coral.ai/docs/edgetpu/models-intro/
|
347 |
-
try:
|
348 |
-
cmd = 'edgetpu_compiler --version'
|
349 |
-
help_url = 'https://coral.ai/docs/edgetpu/compiler/'
|
350 |
-
assert platform.system() == 'Linux', f'export only supported on Linux. See {help_url}'
|
351 |
-
if subprocess.run(cmd + ' >/dev/null', shell=True).returncode != 0:
|
352 |
-
LOGGER.info(f'\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}')
|
353 |
-
sudo = subprocess.run('sudo --version >/dev/null', shell=True).returncode == 0 # sudo installed on system
|
354 |
-
for c in ['curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -',
|
355 |
-
'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list',
|
356 |
-
'sudo apt-get update',
|
357 |
-
'sudo apt-get install edgetpu-compiler']:
|
358 |
-
subprocess.run(c if sudo else c.replace('sudo ', ''), shell=True, check=True)
|
359 |
-
ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1]
|
360 |
-
|
361 |
-
LOGGER.info(f'\n{prefix} starting export with Edge TPU compiler {ver}...')
|
362 |
-
f = str(file).replace('.pt', '-int8_edgetpu.tflite') # Edge TPU model
|
363 |
-
f_tfl = str(file).replace('.pt', '-int8.tflite') # TFLite model
|
364 |
-
|
365 |
-
cmd = f"edgetpu_compiler -s {f_tfl}"
|
366 |
-
subprocess.run(cmd, shell=True, check=True)
|
367 |
-
|
368 |
-
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
369 |
-
return f
|
370 |
-
except Exception as e:
|
371 |
-
LOGGER.info(f'\n{prefix} export failure: {e}')
|
372 |
-
|
373 |
-
|
374 |
-
def export_tfjs(keras_model, im, file, prefix=colorstr('TensorFlow.js:')):
|
375 |
-
# YOLOv5 TensorFlow.js export
|
376 |
-
try:
|
377 |
-
check_requirements(('tensorflowjs',))
|
378 |
-
import re
|
379 |
-
|
380 |
-
import tensorflowjs as tfjs
|
381 |
-
|
382 |
-
LOGGER.info(f'\n{prefix} starting export with tensorflowjs {tfjs.__version__}...')
|
383 |
-
f = str(file).replace('.pt', '_web_model') # js dir
|
384 |
-
f_pb = file.with_suffix('.pb') # *.pb path
|
385 |
-
f_json = f + '/model.json' # *.json path
|
386 |
-
|
387 |
-
cmd = f'tensorflowjs_converter --input_format=tf_frozen_model ' \
|
388 |
-
f'--output_node_names="Identity,Identity_1,Identity_2,Identity_3" {f_pb} {f}'
|
389 |
-
subprocess.run(cmd, shell=True)
|
390 |
-
|
391 |
-
json = open(f_json).read()
|
392 |
-
with open(f_json, 'w') as j: # sort JSON Identity_* in ascending order
|
393 |
-
subst = re.sub(
|
394 |
-
r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, '
|
395 |
-
r'"Identity.?.?": {"name": "Identity.?.?"}, '
|
396 |
-
r'"Identity.?.?": {"name": "Identity.?.?"}, '
|
397 |
-
r'"Identity.?.?": {"name": "Identity.?.?"}}}',
|
398 |
-
r'{"outputs": {"Identity": {"name": "Identity"}, '
|
399 |
-
r'"Identity_1": {"name": "Identity_1"}, '
|
400 |
-
r'"Identity_2": {"name": "Identity_2"}, '
|
401 |
-
r'"Identity_3": {"name": "Identity_3"}}}',
|
402 |
-
json)
|
403 |
-
j.write(subst)
|
404 |
-
|
405 |
-
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
406 |
-
return f
|
407 |
-
except Exception as e:
|
408 |
-
LOGGER.info(f'\n{prefix} export failure: {e}')
|
409 |
-
|
410 |
-
|
411 |
-
@torch.no_grad()
|
412 |
-
def run(data=ROOT / 'data/coco128.yaml', # 'dataset.yaml path'
|
413 |
-
weights=ROOT / 'yolov5s.pt', # weights path
|
414 |
-
imgsz=(640, 640), # image (height, width)
|
415 |
-
batch_size=1, # batch size
|
416 |
-
device='cpu', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
417 |
-
include=('torchscript', 'onnx'), # include formats
|
418 |
-
half=False, # FP16 half-precision export
|
419 |
-
inplace=False, # set YOLOv5 Detect() inplace=True
|
420 |
-
train=False, # model.train() mode
|
421 |
-
optimize=False, # TorchScript: optimize for mobile
|
422 |
-
int8=False, # CoreML/TF INT8 quantization
|
423 |
-
dynamic=False, # ONNX/TF: dynamic axes
|
424 |
-
simplify=False, # ONNX: simplify model
|
425 |
-
opset=12, # ONNX: opset version
|
426 |
-
verbose=False, # TensorRT: verbose log
|
427 |
-
workspace=4, # TensorRT: workspace size (GB)
|
428 |
-
nms=False, # TF: add NMS to model
|
429 |
-
agnostic_nms=False, # TF: add agnostic NMS to model
|
430 |
-
topk_per_class=100, # TF.js NMS: topk per class to keep
|
431 |
-
topk_all=100, # TF.js NMS: topk for all classes to keep
|
432 |
-
iou_thres=0.45, # TF.js NMS: IoU threshold
|
433 |
-
conf_thres=0.25 # TF.js NMS: confidence threshold
|
434 |
-
):
|
435 |
-
t = time.time()
|
436 |
-
include = [x.lower() for x in include] # to lowercase
|
437 |
-
formats = tuple(export_formats()['Argument'][1:]) # --include arguments
|
438 |
-
flags = [x in include for x in formats]
|
439 |
-
assert sum(flags) == len(include), f'ERROR: Invalid --include {include}, valid --include arguments are {formats}'
|
440 |
-
jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs = flags # export booleans
|
441 |
-
file = Path(url2file(weights) if str(weights).startswith(('http:/', 'https:/')) else weights) # PyTorch weights
|
442 |
-
|
443 |
-
# Load PyTorch model
|
444 |
-
device = select_device(device)
|
445 |
-
assert not (device.type == 'cpu' and half), '--half only compatible with GPU export, i.e. use --device 0'
|
446 |
-
model = attempt_load(weights, map_location=device, inplace=True, fuse=True) # load FP32 model
|
447 |
-
nc, names = model.nc, model.names # number of classes, class names
|
448 |
-
|
449 |
-
# Checks
|
450 |
-
imgsz *= 2 if len(imgsz) == 1 else 1 # expand
|
451 |
-
opset = 12 if ('openvino' in include) else opset # OpenVINO requires opset <= 12
|
452 |
-
assert nc == len(names), f'Model class count {nc} != len(names) {len(names)}'
|
453 |
-
|
454 |
-
# Input
|
455 |
-
gs = int(max(model.stride)) # grid size (max stride)
|
456 |
-
imgsz = [check_img_size(x, gs) for x in imgsz] # verify img_size are gs-multiples
|
457 |
-
im = torch.zeros(batch_size, 3, *imgsz).to(device) # image size(1,3,320,192) BCHW iDetection
|
458 |
-
|
459 |
-
# Update model
|
460 |
-
if half:
|
461 |
-
im, model = im.half(), model.half() # to FP16
|
462 |
-
model.train() if train else model.eval() # training mode = no Detect() layer grid construction
|
463 |
-
for k, m in model.named_modules():
|
464 |
-
if isinstance(m, Conv): # assign export-friendly activations
|
465 |
-
if isinstance(m.act, nn.SiLU):
|
466 |
-
m.act = SiLU()
|
467 |
-
elif isinstance(m, Detect):
|
468 |
-
m.inplace = inplace
|
469 |
-
m.onnx_dynamic = dynamic
|
470 |
-
if hasattr(m, 'forward_export'):
|
471 |
-
m.forward = m.forward_export # assign custom forward (optional)
|
472 |
-
|
473 |
-
for _ in range(2):
|
474 |
-
y = model(im) # dry runs
|
475 |
-
shape = tuple(y[0].shape) # model output shape
|
476 |
-
LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} with output shape {shape} ({file_size(file):.1f} MB)")
|
477 |
-
|
478 |
-
# Exports
|
479 |
-
f = [''] * 10 # exported filenames
|
480 |
-
warnings.filterwarnings(action='ignore', category=torch.jit.TracerWarning) # suppress TracerWarning
|
481 |
-
if jit:
|
482 |
-
f[0] = export_torchscript(model, im, file, optimize)
|
483 |
-
if engine: # TensorRT required before ONNX
|
484 |
-
f[1] = export_engine(model, im, file, train, half, simplify, workspace, verbose)
|
485 |
-
if onnx or xml: # OpenVINO requires ONNX
|
486 |
-
f[2] = export_onnx(model, im, file, opset, train, dynamic, simplify)
|
487 |
-
if xml: # OpenVINO
|
488 |
-
f[3] = export_openvino(model, im, file)
|
489 |
-
if coreml:
|
490 |
-
_, f[4] = export_coreml(model, im, file)
|
491 |
-
|
492 |
-
# TensorFlow Exports
|
493 |
-
if any((saved_model, pb, tflite, edgetpu, tfjs)):
|
494 |
-
if int8 or edgetpu: # TFLite --int8 bug https://github.com/ultralytics/yolov5/issues/5707
|
495 |
-
check_requirements(('flatbuffers==1.12',)) # required before `import tensorflow`
|
496 |
-
assert not (tflite and tfjs), 'TFLite and TF.js models must be exported separately, please pass only one type.'
|
497 |
-
model, f[5] = export_saved_model(model.cpu(), im, file, dynamic, tf_nms=nms or agnostic_nms or tfjs,
|
498 |
-
agnostic_nms=agnostic_nms or tfjs, topk_per_class=topk_per_class,
|
499 |
-
topk_all=topk_all, conf_thres=conf_thres, iou_thres=iou_thres) # keras model
|
500 |
-
if pb or tfjs: # pb prerequisite to tfjs
|
501 |
-
f[6] = export_pb(model, im, file)
|
502 |
-
if tflite or edgetpu:
|
503 |
-
f[7] = export_tflite(model, im, file, int8=int8 or edgetpu, data=data, ncalib=100)
|
504 |
-
if edgetpu:
|
505 |
-
f[8] = export_edgetpu(model, im, file)
|
506 |
-
if tfjs:
|
507 |
-
f[9] = export_tfjs(model, im, file)
|
508 |
-
|
509 |
-
# Finish
|
510 |
-
f = [str(x) for x in f if x] # filter out '' and None
|
511 |
-
if any(f):
|
512 |
-
LOGGER.info(f'\nExport complete ({time.time() - t:.2f}s)'
|
513 |
-
f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
|
514 |
-
f"\nDetect: python detect.py --weights {f[-1]}"
|
515 |
-
f"\nPyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', '{f[-1]}')"
|
516 |
-
f"\nValidate: python val.py --weights {f[-1]}"
|
517 |
-
f"\nVisualize: https://netron.app")
|
518 |
-
return f # return list of exported files/dirs
|
519 |
-
|
520 |
-
|
521 |
-
def parse_opt():
|
522 |
-
parser = argparse.ArgumentParser()
|
523 |
-
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
|
524 |
-
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model.pt path(s)')
|
525 |
-
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640, 640], help='image (h, w)')
|
526 |
-
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
|
527 |
-
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
528 |
-
parser.add_argument('--half', action='store_true', help='FP16 half-precision export')
|
529 |
-
parser.add_argument('--inplace', action='store_true', help='set YOLOv5 Detect() inplace=True')
|
530 |
-
parser.add_argument('--train', action='store_true', help='model.train() mode')
|
531 |
-
parser.add_argument('--optimize', action='store_true', help='TorchScript: optimize for mobile')
|
532 |
-
parser.add_argument('--int8', action='store_true', help='CoreML/TF INT8 quantization')
|
533 |
-
parser.add_argument('--dynamic', action='store_true', help='ONNX/TF: dynamic axes')
|
534 |
-
parser.add_argument('--simplify', action='store_true', help='ONNX: simplify model')
|
535 |
-
parser.add_argument('--opset', type=int, default=12, help='ONNX: opset version')
|
536 |
-
parser.add_argument('--verbose', action='store_true', help='TensorRT: verbose log')
|
537 |
-
parser.add_argument('--workspace', type=int, default=4, help='TensorRT: workspace size (GB)')
|
538 |
-
parser.add_argument('--nms', action='store_true', help='TF: add NMS to model')
|
539 |
-
parser.add_argument('--agnostic-nms', action='store_true', help='TF: add agnostic NMS to model')
|
540 |
-
parser.add_argument('--topk-per-class', type=int, default=100, help='TF.js NMS: topk per class to keep')
|
541 |
-
parser.add_argument('--topk-all', type=int, default=100, help='TF.js NMS: topk for all classes to keep')
|
542 |
-
parser.add_argument('--iou-thres', type=float, default=0.45, help='TF.js NMS: IoU threshold')
|
543 |
-
parser.add_argument('--conf-thres', type=float, default=0.25, help='TF.js NMS: confidence threshold')
|
544 |
-
parser.add_argument('--include', nargs='+',
|
545 |
-
default=['torchscript', 'onnx'],
|
546 |
-
help='torchscript, onnx, openvino, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs')
|
547 |
-
opt = parser.parse_args()
|
548 |
-
print_args(FILE.stem, opt)
|
549 |
-
return opt
|
550 |
-
|
551 |
-
|
552 |
-
def main(opt):
|
553 |
-
for opt.weights in (opt.weights if isinstance(opt.weights, list) else [opt.weights]):
|
554 |
-
run(**vars(opt))
|
555 |
-
|
556 |
-
|
557 |
-
if __name__ == "__main__":
|
558 |
-
opt = parse_opt()
|
559 |
-
main(opt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/hubconf.py
DELETED
@@ -1,143 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
"""
|
3 |
-
PyTorch Hub models https://pytorch.org/hub/ultralytics_yolov5/
|
4 |
-
|
5 |
-
Usage:
|
6 |
-
import torch
|
7 |
-
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')
|
8 |
-
model = torch.hub.load('ultralytics/yolov5:master', 'custom', 'path/to/yolov5s.onnx') # file from branch
|
9 |
-
"""
|
10 |
-
|
11 |
-
import torch
|
12 |
-
|
13 |
-
|
14 |
-
def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
15 |
-
"""Creates or loads a YOLOv5 model
|
16 |
-
|
17 |
-
Arguments:
|
18 |
-
name (str): model name 'yolov5s' or path 'path/to/best.pt'
|
19 |
-
pretrained (bool): load pretrained weights into the model
|
20 |
-
channels (int): number of input channels
|
21 |
-
classes (int): number of model classes
|
22 |
-
autoshape (bool): apply YOLOv5 .autoshape() wrapper to model
|
23 |
-
verbose (bool): print all information to screen
|
24 |
-
device (str, torch.device, None): device to use for model parameters
|
25 |
-
|
26 |
-
Returns:
|
27 |
-
YOLOv5 model
|
28 |
-
"""
|
29 |
-
from pathlib import Path
|
30 |
-
|
31 |
-
from models.common import AutoShape, DetectMultiBackend
|
32 |
-
from models.yolo import Model
|
33 |
-
from utils.downloads import attempt_download
|
34 |
-
from utils.general import LOGGER, check_requirements, intersect_dicts, logging
|
35 |
-
from utils.torch_utils import select_device
|
36 |
-
|
37 |
-
if not verbose:
|
38 |
-
LOGGER.setLevel(logging.WARNING)
|
39 |
-
check_requirements(exclude=('tensorboard', 'thop', 'opencv-python'))
|
40 |
-
name = Path(name)
|
41 |
-
path = name.with_suffix('.pt') if name.suffix == '' else name # checkpoint path
|
42 |
-
try:
|
43 |
-
device = select_device(('0' if torch.cuda.is_available() else 'cpu') if device is None else device)
|
44 |
-
|
45 |
-
if pretrained and channels == 3 and classes == 80:
|
46 |
-
model = DetectMultiBackend(path, device=device) # download/load FP32 model
|
47 |
-
# model = models.experimental.attempt_load(path, map_location=device) # download/load FP32 model
|
48 |
-
else:
|
49 |
-
cfg = list((Path(__file__).parent / 'models').rglob(f'{path.stem}.yaml'))[0] # model.yaml path
|
50 |
-
model = Model(cfg, channels, classes) # create model
|
51 |
-
if pretrained:
|
52 |
-
ckpt = torch.load(attempt_download(path), map_location=device) # load
|
53 |
-
csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
|
54 |
-
csd = intersect_dicts(csd, model.state_dict(), exclude=['anchors']) # intersect
|
55 |
-
model.load_state_dict(csd, strict=False) # load
|
56 |
-
if len(ckpt['model'].names) == classes:
|
57 |
-
model.names = ckpt['model'].names # set class names attribute
|
58 |
-
if autoshape:
|
59 |
-
model = AutoShape(model) # for file/URI/PIL/cv2/np inputs and NMS
|
60 |
-
return model.to(device)
|
61 |
-
|
62 |
-
except Exception as e:
|
63 |
-
help_url = 'https://github.com/ultralytics/yolov5/issues/36'
|
64 |
-
s = f'{e}. Cache may be out of date, try `force_reload=True` or see {help_url} for help.'
|
65 |
-
raise Exception(s) from e
|
66 |
-
|
67 |
-
|
68 |
-
def custom(path='path/to/model.pt', autoshape=True, verbose=True, device=None):
|
69 |
-
# YOLOv5 custom or local model
|
70 |
-
return _create(path, autoshape=autoshape, verbose=verbose, device=device)
|
71 |
-
|
72 |
-
|
73 |
-
def yolov5n(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
74 |
-
# YOLOv5-nano model https://github.com/ultralytics/yolov5
|
75 |
-
return _create('yolov5n', pretrained, channels, classes, autoshape, verbose, device)
|
76 |
-
|
77 |
-
|
78 |
-
def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
79 |
-
# YOLOv5-small model https://github.com/ultralytics/yolov5
|
80 |
-
return _create('yolov5s', pretrained, channels, classes, autoshape, verbose, device)
|
81 |
-
|
82 |
-
|
83 |
-
def yolov5m(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
84 |
-
# YOLOv5-medium model https://github.com/ultralytics/yolov5
|
85 |
-
return _create('yolov5m', pretrained, channels, classes, autoshape, verbose, device)
|
86 |
-
|
87 |
-
|
88 |
-
def yolov5l(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
89 |
-
# YOLOv5-large model https://github.com/ultralytics/yolov5
|
90 |
-
return _create('yolov5l', pretrained, channels, classes, autoshape, verbose, device)
|
91 |
-
|
92 |
-
|
93 |
-
def yolov5x(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
94 |
-
# YOLOv5-xlarge model https://github.com/ultralytics/yolov5
|
95 |
-
return _create('yolov5x', pretrained, channels, classes, autoshape, verbose, device)
|
96 |
-
|
97 |
-
|
98 |
-
def yolov5n6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
99 |
-
# YOLOv5-nano-P6 model https://github.com/ultralytics/yolov5
|
100 |
-
return _create('yolov5n6', pretrained, channels, classes, autoshape, verbose, device)
|
101 |
-
|
102 |
-
|
103 |
-
def yolov5s6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
104 |
-
# YOLOv5-small-P6 model https://github.com/ultralytics/yolov5
|
105 |
-
return _create('yolov5s6', pretrained, channels, classes, autoshape, verbose, device)
|
106 |
-
|
107 |
-
|
108 |
-
def yolov5m6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
109 |
-
# YOLOv5-medium-P6 model https://github.com/ultralytics/yolov5
|
110 |
-
return _create('yolov5m6', pretrained, channels, classes, autoshape, verbose, device)
|
111 |
-
|
112 |
-
|
113 |
-
def yolov5l6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
114 |
-
# YOLOv5-large-P6 model https://github.com/ultralytics/yolov5
|
115 |
-
return _create('yolov5l6', pretrained, channels, classes, autoshape, verbose, device)
|
116 |
-
|
117 |
-
|
118 |
-
def yolov5x6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
119 |
-
# YOLOv5-xlarge-P6 model https://github.com/ultralytics/yolov5
|
120 |
-
return _create('yolov5x6', pretrained, channels, classes, autoshape, verbose, device)
|
121 |
-
|
122 |
-
|
123 |
-
if __name__ == '__main__':
|
124 |
-
model = _create(name='yolov5s', pretrained=True, channels=3, classes=80, autoshape=True, verbose=True) # pretrained
|
125 |
-
# model = custom(path='path/to/model.pt') # custom
|
126 |
-
|
127 |
-
# Verify inference
|
128 |
-
from pathlib import Path
|
129 |
-
|
130 |
-
import cv2
|
131 |
-
import numpy as np
|
132 |
-
from PIL import Image
|
133 |
-
|
134 |
-
imgs = ['data/images/zidane.jpg', # filename
|
135 |
-
Path('data/images/zidane.jpg'), # Path
|
136 |
-
'https://ultralytics.com/images/zidane.jpg', # URI
|
137 |
-
cv2.imread('data/images/bus.jpg')[:, :, ::-1], # OpenCV
|
138 |
-
Image.open('data/images/bus.jpg'), # PIL
|
139 |
-
np.zeros((320, 640, 3))] # numpy
|
140 |
-
|
141 |
-
results = model(imgs, size=320) # batched inference
|
142 |
-
results.print()
|
143 |
-
results.save()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/models/__init__.py
DELETED
File without changes
|
ultralytics/yolov5/models/common.py
DELETED
@@ -1,684 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
"""
|
3 |
-
Common modules
|
4 |
-
"""
|
5 |
-
|
6 |
-
import json
|
7 |
-
import math
|
8 |
-
import platform
|
9 |
-
import warnings
|
10 |
-
from collections import OrderedDict, namedtuple
|
11 |
-
from copy import copy
|
12 |
-
from pathlib import Path
|
13 |
-
|
14 |
-
import cv2
|
15 |
-
import numpy as np
|
16 |
-
import pandas as pd
|
17 |
-
import requests
|
18 |
-
import torch
|
19 |
-
import torch.nn as nn
|
20 |
-
import yaml
|
21 |
-
from PIL import Image
|
22 |
-
from torch.cuda import amp
|
23 |
-
|
24 |
-
from utils.datasets import exif_transpose, letterbox
|
25 |
-
from utils.general import (LOGGER, check_requirements, check_suffix, check_version, colorstr, increment_path,
|
26 |
-
make_divisible, non_max_suppression, scale_coords, xywh2xyxy, xyxy2xywh)
|
27 |
-
from utils.plots import Annotator, colors, save_one_box
|
28 |
-
from utils.torch_utils import copy_attr, time_sync
|
29 |
-
|
30 |
-
|
31 |
-
def autopad(k, p=None): # kernel, padding
|
32 |
-
# Pad to 'same'
|
33 |
-
if p is None:
|
34 |
-
p = k // 2 if isinstance(k, int) else (x // 2 for x in k) # auto-pad
|
35 |
-
return p
|
36 |
-
|
37 |
-
|
38 |
-
class Conv(nn.Module):
|
39 |
-
# Standard convolution
|
40 |
-
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
|
41 |
-
super().__init__()
|
42 |
-
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
|
43 |
-
self.bn = nn.BatchNorm2d(c2)
|
44 |
-
self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
|
45 |
-
|
46 |
-
def forward(self, x):
|
47 |
-
return self.act(self.bn(self.conv(x)))
|
48 |
-
|
49 |
-
def forward_fuse(self, x):
|
50 |
-
return self.act(self.conv(x))
|
51 |
-
|
52 |
-
|
53 |
-
class DWConv(Conv):
|
54 |
-
# Depth-wise convolution class
|
55 |
-
def __init__(self, c1, c2, k=1, s=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
|
56 |
-
super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), act=act)
|
57 |
-
|
58 |
-
|
59 |
-
class TransformerLayer(nn.Module):
|
60 |
-
# Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance)
|
61 |
-
def __init__(self, c, num_heads):
|
62 |
-
super().__init__()
|
63 |
-
self.q = nn.Linear(c, c, bias=False)
|
64 |
-
self.k = nn.Linear(c, c, bias=False)
|
65 |
-
self.v = nn.Linear(c, c, bias=False)
|
66 |
-
self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads)
|
67 |
-
self.fc1 = nn.Linear(c, c, bias=False)
|
68 |
-
self.fc2 = nn.Linear(c, c, bias=False)
|
69 |
-
|
70 |
-
def forward(self, x):
|
71 |
-
x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x
|
72 |
-
x = self.fc2(self.fc1(x)) + x
|
73 |
-
return x
|
74 |
-
|
75 |
-
|
76 |
-
class TransformerBlock(nn.Module):
|
77 |
-
# Vision Transformer https://arxiv.org/abs/2010.11929
|
78 |
-
def __init__(self, c1, c2, num_heads, num_layers):
|
79 |
-
super().__init__()
|
80 |
-
self.conv = None
|
81 |
-
if c1 != c2:
|
82 |
-
self.conv = Conv(c1, c2)
|
83 |
-
self.linear = nn.Linear(c2, c2) # learnable position embedding
|
84 |
-
self.tr = nn.Sequential(*(TransformerLayer(c2, num_heads) for _ in range(num_layers)))
|
85 |
-
self.c2 = c2
|
86 |
-
|
87 |
-
def forward(self, x):
|
88 |
-
if self.conv is not None:
|
89 |
-
x = self.conv(x)
|
90 |
-
b, _, w, h = x.shape
|
91 |
-
p = x.flatten(2).permute(2, 0, 1)
|
92 |
-
return self.tr(p + self.linear(p)).permute(1, 2, 0).reshape(b, self.c2, w, h)
|
93 |
-
|
94 |
-
|
95 |
-
class Bottleneck(nn.Module):
|
96 |
-
# Standard bottleneck
|
97 |
-
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
|
98 |
-
super().__init__()
|
99 |
-
c_ = int(c2 * e) # hidden channels
|
100 |
-
self.cv1 = Conv(c1, c_, 1, 1)
|
101 |
-
self.cv2 = Conv(c_, c2, 3, 1, g=g)
|
102 |
-
self.add = shortcut and c1 == c2
|
103 |
-
|
104 |
-
def forward(self, x):
|
105 |
-
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
|
106 |
-
|
107 |
-
|
108 |
-
class BottleneckCSP(nn.Module):
|
109 |
-
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
|
110 |
-
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
111 |
-
super().__init__()
|
112 |
-
c_ = int(c2 * e) # hidden channels
|
113 |
-
self.cv1 = Conv(c1, c_, 1, 1)
|
114 |
-
self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
|
115 |
-
self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
|
116 |
-
self.cv4 = Conv(2 * c_, c2, 1, 1)
|
117 |
-
self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
|
118 |
-
self.act = nn.SiLU()
|
119 |
-
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
|
120 |
-
|
121 |
-
def forward(self, x):
|
122 |
-
y1 = self.cv3(self.m(self.cv1(x)))
|
123 |
-
y2 = self.cv2(x)
|
124 |
-
return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1))))
|
125 |
-
|
126 |
-
|
127 |
-
class C3(nn.Module):
|
128 |
-
# CSP Bottleneck with 3 convolutions
|
129 |
-
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
130 |
-
super().__init__()
|
131 |
-
c_ = int(c2 * e) # hidden channels
|
132 |
-
self.cv1 = Conv(c1, c_, 1, 1)
|
133 |
-
self.cv2 = Conv(c1, c_, 1, 1)
|
134 |
-
self.cv3 = Conv(2 * c_, c2, 1) # act=FReLU(c2)
|
135 |
-
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
|
136 |
-
# self.m = nn.Sequential(*(CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)))
|
137 |
-
|
138 |
-
def forward(self, x):
|
139 |
-
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
|
140 |
-
|
141 |
-
|
142 |
-
class C3TR(C3):
|
143 |
-
# C3 module with TransformerBlock()
|
144 |
-
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
145 |
-
super().__init__(c1, c2, n, shortcut, g, e)
|
146 |
-
c_ = int(c2 * e)
|
147 |
-
self.m = TransformerBlock(c_, c_, 4, n)
|
148 |
-
|
149 |
-
|
150 |
-
class C3SPP(C3):
|
151 |
-
# C3 module with SPP()
|
152 |
-
def __init__(self, c1, c2, k=(5, 9, 13), n=1, shortcut=True, g=1, e=0.5):
|
153 |
-
super().__init__(c1, c2, n, shortcut, g, e)
|
154 |
-
c_ = int(c2 * e)
|
155 |
-
self.m = SPP(c_, c_, k)
|
156 |
-
|
157 |
-
|
158 |
-
class C3Ghost(C3):
|
159 |
-
# C3 module with GhostBottleneck()
|
160 |
-
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
161 |
-
super().__init__(c1, c2, n, shortcut, g, e)
|
162 |
-
c_ = int(c2 * e) # hidden channels
|
163 |
-
self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n)))
|
164 |
-
|
165 |
-
|
166 |
-
class SPP(nn.Module):
|
167 |
-
# Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729
|
168 |
-
def __init__(self, c1, c2, k=(5, 9, 13)):
|
169 |
-
super().__init__()
|
170 |
-
c_ = c1 // 2 # hidden channels
|
171 |
-
self.cv1 = Conv(c1, c_, 1, 1)
|
172 |
-
self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
|
173 |
-
self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
|
174 |
-
|
175 |
-
def forward(self, x):
|
176 |
-
x = self.cv1(x)
|
177 |
-
with warnings.catch_warnings():
|
178 |
-
warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning
|
179 |
-
return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
|
180 |
-
|
181 |
-
|
182 |
-
class SPPF(nn.Module):
|
183 |
-
# Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
|
184 |
-
def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13))
|
185 |
-
super().__init__()
|
186 |
-
c_ = c1 // 2 # hidden channels
|
187 |
-
self.cv1 = Conv(c1, c_, 1, 1)
|
188 |
-
self.cv2 = Conv(c_ * 4, c2, 1, 1)
|
189 |
-
self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
|
190 |
-
|
191 |
-
def forward(self, x):
|
192 |
-
x = self.cv1(x)
|
193 |
-
with warnings.catch_warnings():
|
194 |
-
warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning
|
195 |
-
y1 = self.m(x)
|
196 |
-
y2 = self.m(y1)
|
197 |
-
return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))
|
198 |
-
|
199 |
-
|
200 |
-
class Focus(nn.Module):
|
201 |
-
# Focus wh information into c-space
|
202 |
-
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
|
203 |
-
super().__init__()
|
204 |
-
self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
|
205 |
-
# self.contract = Contract(gain=2)
|
206 |
-
|
207 |
-
def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
|
208 |
-
return self.conv(torch.cat((x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]), 1))
|
209 |
-
# return self.conv(self.contract(x))
|
210 |
-
|
211 |
-
|
212 |
-
class GhostConv(nn.Module):
|
213 |
-
# Ghost Convolution https://github.com/huawei-noah/ghostnet
|
214 |
-
def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
|
215 |
-
super().__init__()
|
216 |
-
c_ = c2 // 2 # hidden channels
|
217 |
-
self.cv1 = Conv(c1, c_, k, s, None, g, act)
|
218 |
-
self.cv2 = Conv(c_, c_, 5, 1, None, c_, act)
|
219 |
-
|
220 |
-
def forward(self, x):
|
221 |
-
y = self.cv1(x)
|
222 |
-
return torch.cat((y, self.cv2(y)), 1)
|
223 |
-
|
224 |
-
|
225 |
-
class GhostBottleneck(nn.Module):
|
226 |
-
# Ghost Bottleneck https://github.com/huawei-noah/ghostnet
|
227 |
-
def __init__(self, c1, c2, k=3, s=1): # ch_in, ch_out, kernel, stride
|
228 |
-
super().__init__()
|
229 |
-
c_ = c2 // 2
|
230 |
-
self.conv = nn.Sequential(GhostConv(c1, c_, 1, 1), # pw
|
231 |
-
DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
|
232 |
-
GhostConv(c_, c2, 1, 1, act=False)) # pw-linear
|
233 |
-
self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False),
|
234 |
-
Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()
|
235 |
-
|
236 |
-
def forward(self, x):
|
237 |
-
return self.conv(x) + self.shortcut(x)
|
238 |
-
|
239 |
-
|
240 |
-
class Contract(nn.Module):
|
241 |
-
# Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40)
|
242 |
-
def __init__(self, gain=2):
|
243 |
-
super().__init__()
|
244 |
-
self.gain = gain
|
245 |
-
|
246 |
-
def forward(self, x):
|
247 |
-
b, c, h, w = x.size() # assert (h / s == 0) and (W / s == 0), 'Indivisible gain'
|
248 |
-
s = self.gain
|
249 |
-
x = x.view(b, c, h // s, s, w // s, s) # x(1,64,40,2,40,2)
|
250 |
-
x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # x(1,2,2,64,40,40)
|
251 |
-
return x.view(b, c * s * s, h // s, w // s) # x(1,256,40,40)
|
252 |
-
|
253 |
-
|
254 |
-
class Expand(nn.Module):
|
255 |
-
# Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160)
|
256 |
-
def __init__(self, gain=2):
|
257 |
-
super().__init__()
|
258 |
-
self.gain = gain
|
259 |
-
|
260 |
-
def forward(self, x):
|
261 |
-
b, c, h, w = x.size() # assert C / s ** 2 == 0, 'Indivisible gain'
|
262 |
-
s = self.gain
|
263 |
-
x = x.view(b, s, s, c // s ** 2, h, w) # x(1,2,2,16,80,80)
|
264 |
-
x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # x(1,16,80,2,80,2)
|
265 |
-
return x.view(b, c // s ** 2, h * s, w * s) # x(1,16,160,160)
|
266 |
-
|
267 |
-
|
268 |
-
class Concat(nn.Module):
|
269 |
-
# Concatenate a list of tensors along dimension
|
270 |
-
def __init__(self, dimension=1):
|
271 |
-
super().__init__()
|
272 |
-
self.d = dimension
|
273 |
-
|
274 |
-
def forward(self, x):
|
275 |
-
return torch.cat(x, self.d)
|
276 |
-
|
277 |
-
|
278 |
-
class DetectMultiBackend(nn.Module):
|
279 |
-
# YOLOv5 MultiBackend class for python inference on various backends
|
280 |
-
def __init__(self, weights='yolov5s.pt', device=torch.device('cpu'), dnn=False, data=None, fp16=False):
|
281 |
-
# Usage:
|
282 |
-
# PyTorch: weights = *.pt
|
283 |
-
# TorchScript: *.torchscript
|
284 |
-
# ONNX Runtime: *.onnx
|
285 |
-
# ONNX OpenCV DNN: *.onnx with --dnn
|
286 |
-
# OpenVINO: *.xml
|
287 |
-
# CoreML: *.mlmodel
|
288 |
-
# TensorRT: *.engine
|
289 |
-
# TensorFlow SavedModel: *_saved_model
|
290 |
-
# TensorFlow GraphDef: *.pb
|
291 |
-
# TensorFlow Lite: *.tflite
|
292 |
-
# TensorFlow Edge TPU: *_edgetpu.tflite
|
293 |
-
from models.experimental import attempt_download, attempt_load # scoped to avoid circular import
|
294 |
-
|
295 |
-
super().__init__()
|
296 |
-
w = str(weights[0] if isinstance(weights, list) else weights)
|
297 |
-
pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs = self.model_type(w) # get backend
|
298 |
-
stride, names = 64, [f'class{i}' for i in range(1000)] # assign defaults
|
299 |
-
w = attempt_download(w) # download if not local
|
300 |
-
fp16 &= (pt or jit or onnx or engine) and device.type != 'cpu' # FP16
|
301 |
-
if data: # data.yaml path (optional)
|
302 |
-
with open(data, errors='ignore') as f:
|
303 |
-
names = yaml.safe_load(f)['names'] # class names
|
304 |
-
|
305 |
-
if pt: # PyTorch
|
306 |
-
model = attempt_load(weights if isinstance(weights, list) else w, map_location=device)
|
307 |
-
stride = max(int(model.stride.max()), 32) # model stride
|
308 |
-
names = model.module.names if hasattr(model, 'module') else model.names # get class names
|
309 |
-
model.half() if fp16 else model.float()
|
310 |
-
self.model = model # explicitly assign for to(), cpu(), cuda(), half()
|
311 |
-
elif jit: # TorchScript
|
312 |
-
LOGGER.info(f'Loading {w} for TorchScript inference...')
|
313 |
-
extra_files = {'config.txt': ''} # model metadata
|
314 |
-
model = torch.jit.load(w, _extra_files=extra_files)
|
315 |
-
model.half() if fp16 else model.float()
|
316 |
-
if extra_files['config.txt']:
|
317 |
-
d = json.loads(extra_files['config.txt']) # extra_files dict
|
318 |
-
stride, names = int(d['stride']), d['names']
|
319 |
-
elif dnn: # ONNX OpenCV DNN
|
320 |
-
LOGGER.info(f'Loading {w} for ONNX OpenCV DNN inference...')
|
321 |
-
check_requirements(('opencv-python>=4.5.4',))
|
322 |
-
net = cv2.dnn.readNetFromONNX(w)
|
323 |
-
elif onnx: # ONNX Runtime
|
324 |
-
LOGGER.info(f'Loading {w} for ONNX Runtime inference...')
|
325 |
-
cuda = torch.cuda.is_available()
|
326 |
-
check_requirements(('onnx', 'onnxruntime-gpu' if cuda else 'onnxruntime'))
|
327 |
-
import onnxruntime
|
328 |
-
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if cuda else ['CPUExecutionProvider']
|
329 |
-
session = onnxruntime.InferenceSession(w, providers=providers)
|
330 |
-
elif xml: # OpenVINO
|
331 |
-
LOGGER.info(f'Loading {w} for OpenVINO inference...')
|
332 |
-
check_requirements(('openvino-dev',)) # requires openvino-dev: https://pypi.org/project/openvino-dev/
|
333 |
-
import openvino.inference_engine as ie
|
334 |
-
core = ie.IECore()
|
335 |
-
if not Path(w).is_file(): # if not *.xml
|
336 |
-
w = next(Path(w).glob('*.xml')) # get *.xml file from *_openvino_model dir
|
337 |
-
network = core.read_network(model=w, weights=Path(w).with_suffix('.bin')) # *.xml, *.bin paths
|
338 |
-
executable_network = core.load_network(network, device_name='CPU', num_requests=1)
|
339 |
-
elif engine: # TensorRT
|
340 |
-
LOGGER.info(f'Loading {w} for TensorRT inference...')
|
341 |
-
import tensorrt as trt # https://developer.nvidia.com/nvidia-tensorrt-download
|
342 |
-
check_version(trt.__version__, '7.0.0', hard=True) # require tensorrt>=7.0.0
|
343 |
-
Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr'))
|
344 |
-
logger = trt.Logger(trt.Logger.INFO)
|
345 |
-
with open(w, 'rb') as f, trt.Runtime(logger) as runtime:
|
346 |
-
model = runtime.deserialize_cuda_engine(f.read())
|
347 |
-
bindings = OrderedDict()
|
348 |
-
fp16 = False # default updated below
|
349 |
-
for index in range(model.num_bindings):
|
350 |
-
name = model.get_binding_name(index)
|
351 |
-
dtype = trt.nptype(model.get_binding_dtype(index))
|
352 |
-
shape = tuple(model.get_binding_shape(index))
|
353 |
-
data = torch.from_numpy(np.empty(shape, dtype=np.dtype(dtype))).to(device)
|
354 |
-
bindings[name] = Binding(name, dtype, shape, data, int(data.data_ptr()))
|
355 |
-
if model.binding_is_input(index) and dtype == np.float16:
|
356 |
-
fp16 = True
|
357 |
-
binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items())
|
358 |
-
context = model.create_execution_context()
|
359 |
-
batch_size = bindings['images'].shape[0]
|
360 |
-
elif coreml: # CoreML
|
361 |
-
LOGGER.info(f'Loading {w} for CoreML inference...')
|
362 |
-
import coremltools as ct
|
363 |
-
model = ct.models.MLModel(w)
|
364 |
-
else: # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
|
365 |
-
if saved_model: # SavedModel
|
366 |
-
LOGGER.info(f'Loading {w} for TensorFlow SavedModel inference...')
|
367 |
-
import tensorflow as tf
|
368 |
-
keras = False # assume TF1 saved_model
|
369 |
-
model = tf.keras.models.load_model(w) if keras else tf.saved_model.load(w)
|
370 |
-
elif pb: # GraphDef https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt
|
371 |
-
LOGGER.info(f'Loading {w} for TensorFlow GraphDef inference...')
|
372 |
-
import tensorflow as tf
|
373 |
-
|
374 |
-
def wrap_frozen_graph(gd, inputs, outputs):
|
375 |
-
x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=""), []) # wrapped
|
376 |
-
ge = x.graph.as_graph_element
|
377 |
-
return x.prune(tf.nest.map_structure(ge, inputs), tf.nest.map_structure(ge, outputs))
|
378 |
-
|
379 |
-
gd = tf.Graph().as_graph_def() # graph_def
|
380 |
-
gd.ParseFromString(open(w, 'rb').read())
|
381 |
-
frozen_func = wrap_frozen_graph(gd, inputs="x:0", outputs="Identity:0")
|
382 |
-
elif tflite or edgetpu: # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python
|
383 |
-
try: # https://coral.ai/docs/edgetpu/tflite-python/#update-existing-tf-lite-code-for-the-edge-tpu
|
384 |
-
from tflite_runtime.interpreter import Interpreter, load_delegate
|
385 |
-
except ImportError:
|
386 |
-
import tensorflow as tf
|
387 |
-
Interpreter, load_delegate = tf.lite.Interpreter, tf.lite.experimental.load_delegate,
|
388 |
-
if edgetpu: # Edge TPU https://coral.ai/software/#edgetpu-runtime
|
389 |
-
LOGGER.info(f'Loading {w} for TensorFlow Lite Edge TPU inference...')
|
390 |
-
delegate = {'Linux': 'libedgetpu.so.1',
|
391 |
-
'Darwin': 'libedgetpu.1.dylib',
|
392 |
-
'Windows': 'edgetpu.dll'}[platform.system()]
|
393 |
-
interpreter = Interpreter(model_path=w, experimental_delegates=[load_delegate(delegate)])
|
394 |
-
else: # Lite
|
395 |
-
LOGGER.info(f'Loading {w} for TensorFlow Lite inference...')
|
396 |
-
interpreter = Interpreter(model_path=w) # load TFLite model
|
397 |
-
interpreter.allocate_tensors() # allocate
|
398 |
-
input_details = interpreter.get_input_details() # inputs
|
399 |
-
output_details = interpreter.get_output_details() # outputs
|
400 |
-
elif tfjs:
|
401 |
-
raise Exception('ERROR: YOLOv5 TF.js inference is not supported')
|
402 |
-
self.__dict__.update(locals()) # assign all variables to self
|
403 |
-
|
404 |
-
def forward(self, im, augment=False, visualize=False, val=False):
|
405 |
-
# YOLOv5 MultiBackend inference
|
406 |
-
b, ch, h, w = im.shape # batch, channel, height, width
|
407 |
-
if self.pt or self.jit: # PyTorch
|
408 |
-
y = self.model(im) if self.jit else self.model(im, augment=augment, visualize=visualize)
|
409 |
-
return y if val else y[0]
|
410 |
-
elif self.dnn: # ONNX OpenCV DNN
|
411 |
-
im = im.cpu().numpy() # torch to numpy
|
412 |
-
self.net.setInput(im)
|
413 |
-
y = self.net.forward()
|
414 |
-
elif self.onnx: # ONNX Runtime
|
415 |
-
im = im.cpu().numpy() # torch to numpy
|
416 |
-
y = self.session.run([self.session.get_outputs()[0].name], {self.session.get_inputs()[0].name: im})[0]
|
417 |
-
elif self.xml: # OpenVINO
|
418 |
-
im = im.cpu().numpy() # FP32
|
419 |
-
desc = self.ie.TensorDesc(precision='FP32', dims=im.shape, layout='NCHW') # Tensor Description
|
420 |
-
request = self.executable_network.requests[0] # inference request
|
421 |
-
request.set_blob(blob_name='images', blob=self.ie.Blob(desc, im)) # name=next(iter(request.input_blobs))
|
422 |
-
request.infer()
|
423 |
-
y = request.output_blobs['output'].buffer # name=next(iter(request.output_blobs))
|
424 |
-
elif self.engine: # TensorRT
|
425 |
-
assert im.shape == self.bindings['images'].shape, (im.shape, self.bindings['images'].shape)
|
426 |
-
self.binding_addrs['images'] = int(im.data_ptr())
|
427 |
-
self.context.execute_v2(list(self.binding_addrs.values()))
|
428 |
-
y = self.bindings['output'].data
|
429 |
-
elif self.coreml: # CoreML
|
430 |
-
im = im.permute(0, 2, 3, 1).cpu().numpy() # torch BCHW to numpy BHWC shape(1,320,192,3)
|
431 |
-
im = Image.fromarray((im[0] * 255).astype('uint8'))
|
432 |
-
# im = im.resize((192, 320), Image.ANTIALIAS)
|
433 |
-
y = self.model.predict({'image': im}) # coordinates are xywh normalized
|
434 |
-
if 'confidence' in y:
|
435 |
-
box = xywh2xyxy(y['coordinates'] * [[w, h, w, h]]) # xyxy pixels
|
436 |
-
conf, cls = y['confidence'].max(1), y['confidence'].argmax(1).astype(np.float)
|
437 |
-
y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1)
|
438 |
-
else:
|
439 |
-
k = 'var_' + str(sorted(int(k.replace('var_', '')) for k in y)[-1]) # output key
|
440 |
-
y = y[k] # output
|
441 |
-
else: # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
|
442 |
-
im = im.permute(0, 2, 3, 1).cpu().numpy() # torch BCHW to numpy BHWC shape(1,320,192,3)
|
443 |
-
if self.saved_model: # SavedModel
|
444 |
-
y = (self.model(im, training=False) if self.keras else self.model(im)).numpy()
|
445 |
-
elif self.pb: # GraphDef
|
446 |
-
y = self.frozen_func(x=self.tf.constant(im)).numpy()
|
447 |
-
else: # Lite or Edge TPU
|
448 |
-
input, output = self.input_details[0], self.output_details[0]
|
449 |
-
int8 = input['dtype'] == np.uint8 # is TFLite quantized uint8 model
|
450 |
-
if int8:
|
451 |
-
scale, zero_point = input['quantization']
|
452 |
-
im = (im / scale + zero_point).astype(np.uint8) # de-scale
|
453 |
-
self.interpreter.set_tensor(input['index'], im)
|
454 |
-
self.interpreter.invoke()
|
455 |
-
y = self.interpreter.get_tensor(output['index'])
|
456 |
-
if int8:
|
457 |
-
scale, zero_point = output['quantization']
|
458 |
-
y = (y.astype(np.float32) - zero_point) * scale # re-scale
|
459 |
-
y[..., :4] *= [w, h, w, h] # xywh normalized to pixels
|
460 |
-
|
461 |
-
if isinstance(y, np.ndarray):
|
462 |
-
y = torch.tensor(y, device=self.device)
|
463 |
-
return (y, []) if val else y
|
464 |
-
|
465 |
-
def warmup(self, imgsz=(1, 3, 640, 640)):
|
466 |
-
# Warmup model by running inference once
|
467 |
-
if any((self.pt, self.jit, self.onnx, self.engine, self.saved_model, self.pb)): # warmup types
|
468 |
-
if self.device.type != 'cpu': # only warmup GPU models
|
469 |
-
im = torch.zeros(*imgsz, dtype=torch.half if self.fp16 else torch.float, device=self.device) # input
|
470 |
-
for _ in range(2 if self.jit else 1): #
|
471 |
-
self.forward(im) # warmup
|
472 |
-
|
473 |
-
@staticmethod
|
474 |
-
def model_type(p='path/to/model.pt'):
|
475 |
-
# Return model type from model path, i.e. path='path/to/model.onnx' -> type=onnx
|
476 |
-
from export import export_formats
|
477 |
-
suffixes = list(export_formats().Suffix) + ['.xml'] # export suffixes
|
478 |
-
check_suffix(p, suffixes) # checks
|
479 |
-
p = Path(p).name # eliminate trailing separators
|
480 |
-
pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, xml2 = (s in p for s in suffixes)
|
481 |
-
xml |= xml2 # *_openvino_model or *.xml
|
482 |
-
tflite &= not edgetpu # *.tflite
|
483 |
-
return pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs
|
484 |
-
|
485 |
-
|
486 |
-
class AutoShape(nn.Module):
|
487 |
-
# YOLOv5 input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
|
488 |
-
conf = 0.25 # NMS confidence threshold
|
489 |
-
iou = 0.45 # NMS IoU threshold
|
490 |
-
agnostic = False # NMS class-agnostic
|
491 |
-
multi_label = False # NMS multiple labels per box
|
492 |
-
classes = None # (optional list) filter by class, i.e. = [0, 15, 16] for COCO persons, cats and dogs
|
493 |
-
max_det = 1000 # maximum number of detections per image
|
494 |
-
amp = False # Automatic Mixed Precision (AMP) inference
|
495 |
-
|
496 |
-
def __init__(self, model):
|
497 |
-
super().__init__()
|
498 |
-
LOGGER.info('Adding AutoShape... ')
|
499 |
-
copy_attr(self, model, include=('yaml', 'nc', 'hyp', 'names', 'stride', 'abc'), exclude=()) # copy attributes
|
500 |
-
self.dmb = isinstance(model, DetectMultiBackend) # DetectMultiBackend() instance
|
501 |
-
self.pt = not self.dmb or model.pt # PyTorch model
|
502 |
-
self.model = model.eval()
|
503 |
-
|
504 |
-
def _apply(self, fn):
|
505 |
-
# Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
|
506 |
-
self = super()._apply(fn)
|
507 |
-
if self.pt:
|
508 |
-
m = self.model.model.model[-1] if self.dmb else self.model.model[-1] # Detect()
|
509 |
-
m.stride = fn(m.stride)
|
510 |
-
m.grid = list(map(fn, m.grid))
|
511 |
-
if isinstance(m.anchor_grid, list):
|
512 |
-
m.anchor_grid = list(map(fn, m.anchor_grid))
|
513 |
-
return self
|
514 |
-
|
515 |
-
@torch.no_grad()
|
516 |
-
def forward(self, imgs, size=640, augment=False, profile=False):
|
517 |
-
# Inference from various sources. For height=640, width=1280, RGB images example inputs are:
|
518 |
-
# file: imgs = 'data/images/zidane.jpg' # str or PosixPath
|
519 |
-
# URI: = 'https://ultralytics.com/images/zidane.jpg'
|
520 |
-
# OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(640,1280,3)
|
521 |
-
# PIL: = Image.open('image.jpg') or ImageGrab.grab() # HWC x(640,1280,3)
|
522 |
-
# numpy: = np.zeros((640,1280,3)) # HWC
|
523 |
-
# torch: = torch.zeros(16,3,320,640) # BCHW (scaled to size=640, 0-1 values)
|
524 |
-
# multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
|
525 |
-
|
526 |
-
t = [time_sync()]
|
527 |
-
p = next(self.model.parameters()) if self.pt else torch.zeros(1) # for device and type
|
528 |
-
autocast = self.amp and (p.device.type != 'cpu') # Automatic Mixed Precision (AMP) inference
|
529 |
-
if isinstance(imgs, torch.Tensor): # torch
|
530 |
-
with amp.autocast(autocast):
|
531 |
-
return self.model(imgs.to(p.device).type_as(p), augment, profile) # inference
|
532 |
-
|
533 |
-
# Pre-process
|
534 |
-
n, imgs = (len(imgs), imgs) if isinstance(imgs, list) else (1, [imgs]) # number of images, list of images
|
535 |
-
shape0, shape1, files = [], [], [] # image and inference shapes, filenames
|
536 |
-
for i, im in enumerate(imgs):
|
537 |
-
f = f'image{i}' # filename
|
538 |
-
if isinstance(im, (str, Path)): # filename or uri
|
539 |
-
im, f = Image.open(requests.get(im, stream=True).raw if str(im).startswith('http') else im), im
|
540 |
-
im = np.asarray(exif_transpose(im))
|
541 |
-
elif isinstance(im, Image.Image): # PIL Image
|
542 |
-
im, f = np.asarray(exif_transpose(im)), getattr(im, 'filename', f) or f
|
543 |
-
files.append(Path(f).with_suffix('.jpg').name)
|
544 |
-
if im.shape[0] < 5: # image in CHW
|
545 |
-
im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1)
|
546 |
-
im = im[..., :3] if im.ndim == 3 else np.tile(im[..., None], 3) # enforce 3ch input
|
547 |
-
s = im.shape[:2] # HWC
|
548 |
-
shape0.append(s) # image shape
|
549 |
-
g = (size / max(s)) # gain
|
550 |
-
shape1.append([y * g for y in s])
|
551 |
-
imgs[i] = im if im.data.contiguous else np.ascontiguousarray(im) # update
|
552 |
-
shape1 = [make_divisible(x, self.stride) if self.pt else size for x in np.array(shape1).max(0)] # inf shape
|
553 |
-
x = [letterbox(im, shape1, auto=False)[0] for im in imgs] # pad
|
554 |
-
x = np.ascontiguousarray(np.array(x).transpose((0, 3, 1, 2))) # stack and BHWC to BCHW
|
555 |
-
x = torch.from_numpy(x).to(p.device).type_as(p) / 255 # uint8 to fp16/32
|
556 |
-
t.append(time_sync())
|
557 |
-
|
558 |
-
with amp.autocast(autocast):
|
559 |
-
# Inference
|
560 |
-
y = self.model(x, augment, profile) # forward
|
561 |
-
t.append(time_sync())
|
562 |
-
|
563 |
-
# Post-process
|
564 |
-
y = non_max_suppression(y if self.dmb else y[0], self.conf, self.iou, self.classes, self.agnostic,
|
565 |
-
self.multi_label, max_det=self.max_det) # NMS
|
566 |
-
for i in range(n):
|
567 |
-
scale_coords(shape1, y[i][:, :4], shape0[i])
|
568 |
-
|
569 |
-
t.append(time_sync())
|
570 |
-
return Detections(imgs, y, files, t, self.names, x.shape)
|
571 |
-
|
572 |
-
|
573 |
-
class Detections:
|
574 |
-
# YOLOv5 detections class for inference results
|
575 |
-
def __init__(self, imgs, pred, files, times=(0, 0, 0, 0), names=None, shape=None):
|
576 |
-
super().__init__()
|
577 |
-
d = pred[0].device # device
|
578 |
-
gn = [torch.tensor([*(im.shape[i] for i in [1, 0, 1, 0]), 1, 1], device=d) for im in imgs] # normalizations
|
579 |
-
self.imgs = imgs # list of images as numpy arrays
|
580 |
-
self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)
|
581 |
-
self.names = names # class names
|
582 |
-
self.files = files # image filenames
|
583 |
-
self.times = times # profiling times
|
584 |
-
self.xyxy = pred # xyxy pixels
|
585 |
-
self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels
|
586 |
-
self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized
|
587 |
-
self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized
|
588 |
-
self.n = len(self.pred) # number of images (batch size)
|
589 |
-
self.t = tuple((times[i + 1] - times[i]) * 1000 / self.n for i in range(3)) # timestamps (ms)
|
590 |
-
self.s = shape # inference BCHW shape
|
591 |
-
|
592 |
-
def display(self, pprint=False, show=False, save=False, crop=False, render=False, save_dir=Path('')):
|
593 |
-
crops = []
|
594 |
-
for i, (im, pred) in enumerate(zip(self.imgs, self.pred)):
|
595 |
-
s = f'image {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} ' # string
|
596 |
-
if pred.shape[0]:
|
597 |
-
for c in pred[:, -1].unique():
|
598 |
-
n = (pred[:, -1] == c).sum() # detections per class
|
599 |
-
s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string
|
600 |
-
if show or save or render or crop:
|
601 |
-
annotator = Annotator(im, example=str(self.names))
|
602 |
-
for *box, conf, cls in reversed(pred): # xyxy, confidence, class
|
603 |
-
label = f'{self.names[int(cls)]} {conf:.2f}'
|
604 |
-
if crop:
|
605 |
-
file = save_dir / 'crops' / self.names[int(cls)] / self.files[i] if save else None
|
606 |
-
crops.append({'box': box, 'conf': conf, 'cls': cls, 'label': label,
|
607 |
-
'im': save_one_box(box, im, file=file, save=save)})
|
608 |
-
else: # all others
|
609 |
-
annotator.box_label(box, label, color=colors(cls))
|
610 |
-
im = annotator.im
|
611 |
-
else:
|
612 |
-
s += '(no detections)'
|
613 |
-
|
614 |
-
im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im # from np
|
615 |
-
if pprint:
|
616 |
-
LOGGER.info(s.rstrip(', '))
|
617 |
-
if show:
|
618 |
-
im.show(self.files[i]) # show
|
619 |
-
if save:
|
620 |
-
f = self.files[i]
|
621 |
-
im.save(save_dir / f) # save
|
622 |
-
if i == self.n - 1:
|
623 |
-
LOGGER.info(f"Saved {self.n} image{'s' * (self.n > 1)} to {colorstr('bold', save_dir)}")
|
624 |
-
if render:
|
625 |
-
self.imgs[i] = np.asarray(im)
|
626 |
-
if crop:
|
627 |
-
if save:
|
628 |
-
LOGGER.info(f'Saved results to {save_dir}\n')
|
629 |
-
return crops
|
630 |
-
|
631 |
-
def print(self):
|
632 |
-
self.display(pprint=True) # print results
|
633 |
-
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {tuple(self.s)}' %
|
634 |
-
self.t)
|
635 |
-
|
636 |
-
def show(self):
|
637 |
-
self.display(show=True) # show results
|
638 |
-
|
639 |
-
def save(self, save_dir='runs/detect/exp'):
|
640 |
-
save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True) # increment save_dir
|
641 |
-
self.display(save=True, save_dir=save_dir) # save results
|
642 |
-
|
643 |
-
def crop(self, save=True, save_dir='runs/detect/exp'):
|
644 |
-
save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True) if save else None
|
645 |
-
return self.display(crop=True, save=save, save_dir=save_dir) # crop results
|
646 |
-
|
647 |
-
def render(self):
|
648 |
-
self.display(render=True) # render results
|
649 |
-
return self.imgs
|
650 |
-
|
651 |
-
def pandas(self):
|
652 |
-
# return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0])
|
653 |
-
new = copy(self) # return copy
|
654 |
-
ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name' # xyxy columns
|
655 |
-
cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name' # xywh columns
|
656 |
-
for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]):
|
657 |
-
a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)] # update
|
658 |
-
setattr(new, k, [pd.DataFrame(x, columns=c) for x in a])
|
659 |
-
return new
|
660 |
-
|
661 |
-
def tolist(self):
|
662 |
-
# return a list of Detections objects, i.e. 'for result in results.tolist():'
|
663 |
-
r = range(self.n) # iterable
|
664 |
-
x = [Detections([self.imgs[i]], [self.pred[i]], [self.files[i]], self.times, self.names, self.s) for i in r]
|
665 |
-
# for d in x:
|
666 |
-
# for k in ['imgs', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']:
|
667 |
-
# setattr(d, k, getattr(d, k)[0]) # pop out of list
|
668 |
-
return x
|
669 |
-
|
670 |
-
def __len__(self):
|
671 |
-
return self.n
|
672 |
-
|
673 |
-
|
674 |
-
class Classify(nn.Module):
|
675 |
-
# Classification head, i.e. x(b,c1,20,20) to x(b,c2)
|
676 |
-
def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups
|
677 |
-
super().__init__()
|
678 |
-
self.aap = nn.AdaptiveAvgPool2d(1) # to x(b,c1,1,1)
|
679 |
-
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g) # to x(b,c2,1,1)
|
680 |
-
self.flat = nn.Flatten()
|
681 |
-
|
682 |
-
def forward(self, x):
|
683 |
-
z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else [x])], 1) # cat if list
|
684 |
-
return self.flat(self.conv(z)) # flatten to x(b,c2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/models/experimental.py
DELETED
@@ -1,121 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
"""
|
3 |
-
Experimental modules
|
4 |
-
"""
|
5 |
-
import math
|
6 |
-
|
7 |
-
import numpy as np
|
8 |
-
import torch
|
9 |
-
import torch.nn as nn
|
10 |
-
|
11 |
-
from models.common import Conv
|
12 |
-
from utils.downloads import attempt_download
|
13 |
-
|
14 |
-
|
15 |
-
class CrossConv(nn.Module):
|
16 |
-
# Cross Convolution Downsample
|
17 |
-
def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
|
18 |
-
# ch_in, ch_out, kernel, stride, groups, expansion, shortcut
|
19 |
-
super().__init__()
|
20 |
-
c_ = int(c2 * e) # hidden channels
|
21 |
-
self.cv1 = Conv(c1, c_, (1, k), (1, s))
|
22 |
-
self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
|
23 |
-
self.add = shortcut and c1 == c2
|
24 |
-
|
25 |
-
def forward(self, x):
|
26 |
-
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
|
27 |
-
|
28 |
-
|
29 |
-
class Sum(nn.Module):
|
30 |
-
# Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
|
31 |
-
def __init__(self, n, weight=False): # n: number of inputs
|
32 |
-
super().__init__()
|
33 |
-
self.weight = weight # apply weights boolean
|
34 |
-
self.iter = range(n - 1) # iter object
|
35 |
-
if weight:
|
36 |
-
self.w = nn.Parameter(-torch.arange(1.0, n) / 2, requires_grad=True) # layer weights
|
37 |
-
|
38 |
-
def forward(self, x):
|
39 |
-
y = x[0] # no weight
|
40 |
-
if self.weight:
|
41 |
-
w = torch.sigmoid(self.w) * 2
|
42 |
-
for i in self.iter:
|
43 |
-
y = y + x[i + 1] * w[i]
|
44 |
-
else:
|
45 |
-
for i in self.iter:
|
46 |
-
y = y + x[i + 1]
|
47 |
-
return y
|
48 |
-
|
49 |
-
|
50 |
-
class MixConv2d(nn.Module):
|
51 |
-
# Mixed Depth-wise Conv https://arxiv.org/abs/1907.09595
|
52 |
-
def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True): # ch_in, ch_out, kernel, stride, ch_strategy
|
53 |
-
super().__init__()
|
54 |
-
n = len(k) # number of convolutions
|
55 |
-
if equal_ch: # equal c_ per group
|
56 |
-
i = torch.linspace(0, n - 1E-6, c2).floor() # c2 indices
|
57 |
-
c_ = [(i == g).sum() for g in range(n)] # intermediate channels
|
58 |
-
else: # equal weight.numel() per group
|
59 |
-
b = [c2] + [0] * n
|
60 |
-
a = np.eye(n + 1, n, k=-1)
|
61 |
-
a -= np.roll(a, 1, axis=1)
|
62 |
-
a *= np.array(k) ** 2
|
63 |
-
a[0] = 1
|
64 |
-
c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
|
65 |
-
|
66 |
-
self.m = nn.ModuleList(
|
67 |
-
[nn.Conv2d(c1, int(c_), k, s, k // 2, groups=math.gcd(c1, int(c_)), bias=False) for k, c_ in zip(k, c_)])
|
68 |
-
self.bn = nn.BatchNorm2d(c2)
|
69 |
-
self.act = nn.SiLU()
|
70 |
-
|
71 |
-
def forward(self, x):
|
72 |
-
return self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
|
73 |
-
|
74 |
-
|
75 |
-
class Ensemble(nn.ModuleList):
|
76 |
-
# Ensemble of models
|
77 |
-
def __init__(self):
|
78 |
-
super().__init__()
|
79 |
-
|
80 |
-
def forward(self, x, augment=False, profile=False, visualize=False):
|
81 |
-
y = []
|
82 |
-
for module in self:
|
83 |
-
y.append(module(x, augment, profile, visualize)[0])
|
84 |
-
# y = torch.stack(y).max(0)[0] # max ensemble
|
85 |
-
# y = torch.stack(y).mean(0) # mean ensemble
|
86 |
-
y = torch.cat(y, 1) # nms ensemble
|
87 |
-
return y, None # inference, train output
|
88 |
-
|
89 |
-
|
90 |
-
def attempt_load(weights, map_location=None, inplace=True, fuse=True):
|
91 |
-
from models.yolo import Detect, Model
|
92 |
-
|
93 |
-
# Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
|
94 |
-
model = Ensemble()
|
95 |
-
for w in weights if isinstance(weights, list) else [weights]:
|
96 |
-
ckpt = torch.load(attempt_download(w), map_location=map_location) # load
|
97 |
-
ckpt = (ckpt.get('ema') or ckpt['model']).float() # FP32 model
|
98 |
-
model.append(ckpt.fuse().eval() if fuse else ckpt.eval()) # fused or un-fused model in eval mode
|
99 |
-
|
100 |
-
# Compatibility updates
|
101 |
-
for m in model.modules():
|
102 |
-
t = type(m)
|
103 |
-
if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model):
|
104 |
-
m.inplace = inplace # torch 1.7.0 compatibility
|
105 |
-
if t is Detect:
|
106 |
-
if not isinstance(m.anchor_grid, list): # new Detect Layer compatibility
|
107 |
-
delattr(m, 'anchor_grid')
|
108 |
-
setattr(m, 'anchor_grid', [torch.zeros(1)] * m.nl)
|
109 |
-
elif t is Conv:
|
110 |
-
m._non_persistent_buffers_set = set() # torch 1.6.0 compatibility
|
111 |
-
elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'):
|
112 |
-
m.recompute_scale_factor = None # torch 1.11.0 compatibility
|
113 |
-
|
114 |
-
if len(model) == 1:
|
115 |
-
return model[-1] # return model
|
116 |
-
else:
|
117 |
-
print(f'Ensemble created with {weights}\n')
|
118 |
-
for k in ['names']:
|
119 |
-
setattr(model, k, getattr(model[-1], k))
|
120 |
-
model.stride = model[torch.argmax(torch.tensor([m.stride.max() for m in model])).int()].stride # max stride
|
121 |
-
return model # return ensemble
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/models/hub/anchors.yaml
DELETED
@@ -1,59 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
# Default anchors for COCO data
|
3 |
-
|
4 |
-
|
5 |
-
# P5 -------------------------------------------------------------------------------------------------------------------
|
6 |
-
# P5-640:
|
7 |
-
anchors_p5_640:
|
8 |
-
- [10,13, 16,30, 33,23] # P3/8
|
9 |
-
- [30,61, 62,45, 59,119] # P4/16
|
10 |
-
- [116,90, 156,198, 373,326] # P5/32
|
11 |
-
|
12 |
-
|
13 |
-
# P6 -------------------------------------------------------------------------------------------------------------------
|
14 |
-
# P6-640: thr=0.25: 0.9964 BPR, 5.54 anchors past thr, n=12, img_size=640, metric_all=0.281/0.716-mean/best, past_thr=0.469-mean: 9,11, 21,19, 17,41, 43,32, 39,70, 86,64, 65,131, 134,130, 120,265, 282,180, 247,354, 512,387
|
15 |
-
anchors_p6_640:
|
16 |
-
- [9,11, 21,19, 17,41] # P3/8
|
17 |
-
- [43,32, 39,70, 86,64] # P4/16
|
18 |
-
- [65,131, 134,130, 120,265] # P5/32
|
19 |
-
- [282,180, 247,354, 512,387] # P6/64
|
20 |
-
|
21 |
-
# P6-1280: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1280, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 19,27, 44,40, 38,94, 96,68, 86,152, 180,137, 140,301, 303,264, 238,542, 436,615, 739,380, 925,792
|
22 |
-
anchors_p6_1280:
|
23 |
-
- [19,27, 44,40, 38,94] # P3/8
|
24 |
-
- [96,68, 86,152, 180,137] # P4/16
|
25 |
-
- [140,301, 303,264, 238,542] # P5/32
|
26 |
-
- [436,615, 739,380, 925,792] # P6/64
|
27 |
-
|
28 |
-
# P6-1920: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1920, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 28,41, 67,59, 57,141, 144,103, 129,227, 270,205, 209,452, 455,396, 358,812, 653,922, 1109,570, 1387,1187
|
29 |
-
anchors_p6_1920:
|
30 |
-
- [28,41, 67,59, 57,141] # P3/8
|
31 |
-
- [144,103, 129,227, 270,205] # P4/16
|
32 |
-
- [209,452, 455,396, 358,812] # P5/32
|
33 |
-
- [653,922, 1109,570, 1387,1187] # P6/64
|
34 |
-
|
35 |
-
|
36 |
-
# P7 -------------------------------------------------------------------------------------------------------------------
|
37 |
-
# P7-640: thr=0.25: 0.9962 BPR, 6.76 anchors past thr, n=15, img_size=640, metric_all=0.275/0.733-mean/best, past_thr=0.466-mean: 11,11, 13,30, 29,20, 30,46, 61,38, 39,92, 78,80, 146,66, 79,163, 149,150, 321,143, 157,303, 257,402, 359,290, 524,372
|
38 |
-
anchors_p7_640:
|
39 |
-
- [11,11, 13,30, 29,20] # P3/8
|
40 |
-
- [30,46, 61,38, 39,92] # P4/16
|
41 |
-
- [78,80, 146,66, 79,163] # P5/32
|
42 |
-
- [149,150, 321,143, 157,303] # P6/64
|
43 |
-
- [257,402, 359,290, 524,372] # P7/128
|
44 |
-
|
45 |
-
# P7-1280: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1280, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 19,22, 54,36, 32,77, 70,83, 138,71, 75,173, 165,159, 148,334, 375,151, 334,317, 251,626, 499,474, 750,326, 534,814, 1079,818
|
46 |
-
anchors_p7_1280:
|
47 |
-
- [19,22, 54,36, 32,77] # P3/8
|
48 |
-
- [70,83, 138,71, 75,173] # P4/16
|
49 |
-
- [165,159, 148,334, 375,151] # P5/32
|
50 |
-
- [334,317, 251,626, 499,474] # P6/64
|
51 |
-
- [750,326, 534,814, 1079,818] # P7/128
|
52 |
-
|
53 |
-
# P7-1920: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1920, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 29,34, 81,55, 47,115, 105,124, 207,107, 113,259, 247,238, 222,500, 563,227, 501,476, 376,939, 749,711, 1126,489, 801,1222, 1618,1227
|
54 |
-
anchors_p7_1920:
|
55 |
-
- [29,34, 81,55, 47,115] # P3/8
|
56 |
-
- [105,124, 207,107, 113,259] # P4/16
|
57 |
-
- [247,238, 222,500, 563,227] # P5/32
|
58 |
-
- [501,476, 376,939, 749,711] # P6/64
|
59 |
-
- [1126,489, 801,1222, 1618,1227] # P7/128
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/models/hub/yolov3-spp.yaml
DELETED
@@ -1,51 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
|
3 |
-
# Parameters
|
4 |
-
nc: 80 # number of classes
|
5 |
-
depth_multiple: 1.0 # model depth multiple
|
6 |
-
width_multiple: 1.0 # layer channel multiple
|
7 |
-
anchors:
|
8 |
-
- [10,13, 16,30, 33,23] # P3/8
|
9 |
-
- [30,61, 62,45, 59,119] # P4/16
|
10 |
-
- [116,90, 156,198, 373,326] # P5/32
|
11 |
-
|
12 |
-
# darknet53 backbone
|
13 |
-
backbone:
|
14 |
-
# [from, number, module, args]
|
15 |
-
[[-1, 1, Conv, [32, 3, 1]], # 0
|
16 |
-
[-1, 1, Conv, [64, 3, 2]], # 1-P1/2
|
17 |
-
[-1, 1, Bottleneck, [64]],
|
18 |
-
[-1, 1, Conv, [128, 3, 2]], # 3-P2/4
|
19 |
-
[-1, 2, Bottleneck, [128]],
|
20 |
-
[-1, 1, Conv, [256, 3, 2]], # 5-P3/8
|
21 |
-
[-1, 8, Bottleneck, [256]],
|
22 |
-
[-1, 1, Conv, [512, 3, 2]], # 7-P4/16
|
23 |
-
[-1, 8, Bottleneck, [512]],
|
24 |
-
[-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
|
25 |
-
[-1, 4, Bottleneck, [1024]], # 10
|
26 |
-
]
|
27 |
-
|
28 |
-
# YOLOv3-SPP head
|
29 |
-
head:
|
30 |
-
[[-1, 1, Bottleneck, [1024, False]],
|
31 |
-
[-1, 1, SPP, [512, [5, 9, 13]]],
|
32 |
-
[-1, 1, Conv, [1024, 3, 1]],
|
33 |
-
[-1, 1, Conv, [512, 1, 1]],
|
34 |
-
[-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
|
35 |
-
|
36 |
-
[-2, 1, Conv, [256, 1, 1]],
|
37 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
38 |
-
[[-1, 8], 1, Concat, [1]], # cat backbone P4
|
39 |
-
[-1, 1, Bottleneck, [512, False]],
|
40 |
-
[-1, 1, Bottleneck, [512, False]],
|
41 |
-
[-1, 1, Conv, [256, 1, 1]],
|
42 |
-
[-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
|
43 |
-
|
44 |
-
[-2, 1, Conv, [128, 1, 1]],
|
45 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
46 |
-
[[-1, 6], 1, Concat, [1]], # cat backbone P3
|
47 |
-
[-1, 1, Bottleneck, [256, False]],
|
48 |
-
[-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
|
49 |
-
|
50 |
-
[[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
51 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/models/hub/yolov3-tiny.yaml
DELETED
@@ -1,41 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
|
3 |
-
# Parameters
|
4 |
-
nc: 80 # number of classes
|
5 |
-
depth_multiple: 1.0 # model depth multiple
|
6 |
-
width_multiple: 1.0 # layer channel multiple
|
7 |
-
anchors:
|
8 |
-
- [10,14, 23,27, 37,58] # P4/16
|
9 |
-
- [81,82, 135,169, 344,319] # P5/32
|
10 |
-
|
11 |
-
# YOLOv3-tiny backbone
|
12 |
-
backbone:
|
13 |
-
# [from, number, module, args]
|
14 |
-
[[-1, 1, Conv, [16, 3, 1]], # 0
|
15 |
-
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 1-P1/2
|
16 |
-
[-1, 1, Conv, [32, 3, 1]],
|
17 |
-
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 3-P2/4
|
18 |
-
[-1, 1, Conv, [64, 3, 1]],
|
19 |
-
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 5-P3/8
|
20 |
-
[-1, 1, Conv, [128, 3, 1]],
|
21 |
-
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 7-P4/16
|
22 |
-
[-1, 1, Conv, [256, 3, 1]],
|
23 |
-
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 9-P5/32
|
24 |
-
[-1, 1, Conv, [512, 3, 1]],
|
25 |
-
[-1, 1, nn.ZeroPad2d, [[0, 1, 0, 1]]], # 11
|
26 |
-
[-1, 1, nn.MaxPool2d, [2, 1, 0]], # 12
|
27 |
-
]
|
28 |
-
|
29 |
-
# YOLOv3-tiny head
|
30 |
-
head:
|
31 |
-
[[-1, 1, Conv, [1024, 3, 1]],
|
32 |
-
[-1, 1, Conv, [256, 1, 1]],
|
33 |
-
[-1, 1, Conv, [512, 3, 1]], # 15 (P5/32-large)
|
34 |
-
|
35 |
-
[-2, 1, Conv, [128, 1, 1]],
|
36 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
37 |
-
[[-1, 8], 1, Concat, [1]], # cat backbone P4
|
38 |
-
[-1, 1, Conv, [256, 3, 1]], # 19 (P4/16-medium)
|
39 |
-
|
40 |
-
[[19, 15], 1, Detect, [nc, anchors]], # Detect(P4, P5)
|
41 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/models/hub/yolov3.yaml
DELETED
@@ -1,51 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
|
3 |
-
# Parameters
|
4 |
-
nc: 80 # number of classes
|
5 |
-
depth_multiple: 1.0 # model depth multiple
|
6 |
-
width_multiple: 1.0 # layer channel multiple
|
7 |
-
anchors:
|
8 |
-
- [10,13, 16,30, 33,23] # P3/8
|
9 |
-
- [30,61, 62,45, 59,119] # P4/16
|
10 |
-
- [116,90, 156,198, 373,326] # P5/32
|
11 |
-
|
12 |
-
# darknet53 backbone
|
13 |
-
backbone:
|
14 |
-
# [from, number, module, args]
|
15 |
-
[[-1, 1, Conv, [32, 3, 1]], # 0
|
16 |
-
[-1, 1, Conv, [64, 3, 2]], # 1-P1/2
|
17 |
-
[-1, 1, Bottleneck, [64]],
|
18 |
-
[-1, 1, Conv, [128, 3, 2]], # 3-P2/4
|
19 |
-
[-1, 2, Bottleneck, [128]],
|
20 |
-
[-1, 1, Conv, [256, 3, 2]], # 5-P3/8
|
21 |
-
[-1, 8, Bottleneck, [256]],
|
22 |
-
[-1, 1, Conv, [512, 3, 2]], # 7-P4/16
|
23 |
-
[-1, 8, Bottleneck, [512]],
|
24 |
-
[-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
|
25 |
-
[-1, 4, Bottleneck, [1024]], # 10
|
26 |
-
]
|
27 |
-
|
28 |
-
# YOLOv3 head
|
29 |
-
head:
|
30 |
-
[[-1, 1, Bottleneck, [1024, False]],
|
31 |
-
[-1, 1, Conv, [512, 1, 1]],
|
32 |
-
[-1, 1, Conv, [1024, 3, 1]],
|
33 |
-
[-1, 1, Conv, [512, 1, 1]],
|
34 |
-
[-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
|
35 |
-
|
36 |
-
[-2, 1, Conv, [256, 1, 1]],
|
37 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
38 |
-
[[-1, 8], 1, Concat, [1]], # cat backbone P4
|
39 |
-
[-1, 1, Bottleneck, [512, False]],
|
40 |
-
[-1, 1, Bottleneck, [512, False]],
|
41 |
-
[-1, 1, Conv, [256, 1, 1]],
|
42 |
-
[-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
|
43 |
-
|
44 |
-
[-2, 1, Conv, [128, 1, 1]],
|
45 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
46 |
-
[[-1, 6], 1, Concat, [1]], # cat backbone P3
|
47 |
-
[-1, 1, Bottleneck, [256, False]],
|
48 |
-
[-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
|
49 |
-
|
50 |
-
[[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
51 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/models/hub/yolov5-bifpn.yaml
DELETED
@@ -1,48 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
|
3 |
-
# Parameters
|
4 |
-
nc: 80 # number of classes
|
5 |
-
depth_multiple: 1.0 # model depth multiple
|
6 |
-
width_multiple: 1.0 # layer channel multiple
|
7 |
-
anchors:
|
8 |
-
- [10,13, 16,30, 33,23] # P3/8
|
9 |
-
- [30,61, 62,45, 59,119] # P4/16
|
10 |
-
- [116,90, 156,198, 373,326] # P5/32
|
11 |
-
|
12 |
-
# YOLOv5 v6.0 backbone
|
13 |
-
backbone:
|
14 |
-
# [from, number, module, args]
|
15 |
-
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
16 |
-
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
17 |
-
[-1, 3, C3, [128]],
|
18 |
-
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
19 |
-
[-1, 6, C3, [256]],
|
20 |
-
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
21 |
-
[-1, 9, C3, [512]],
|
22 |
-
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
23 |
-
[-1, 3, C3, [1024]],
|
24 |
-
[-1, 1, SPPF, [1024, 5]], # 9
|
25 |
-
]
|
26 |
-
|
27 |
-
# YOLOv5 v6.0 BiFPN head
|
28 |
-
head:
|
29 |
-
[[-1, 1, Conv, [512, 1, 1]],
|
30 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
31 |
-
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
32 |
-
[-1, 3, C3, [512, False]], # 13
|
33 |
-
|
34 |
-
[-1, 1, Conv, [256, 1, 1]],
|
35 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
36 |
-
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
37 |
-
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
38 |
-
|
39 |
-
[-1, 1, Conv, [256, 3, 2]],
|
40 |
-
[[-1, 14, 6], 1, Concat, [1]], # cat P4 <--- BiFPN change
|
41 |
-
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
42 |
-
|
43 |
-
[-1, 1, Conv, [512, 3, 2]],
|
44 |
-
[[-1, 10], 1, Concat, [1]], # cat head P5
|
45 |
-
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
46 |
-
|
47 |
-
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
48 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/models/hub/yolov5-fpn.yaml
DELETED
@@ -1,42 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
|
3 |
-
# Parameters
|
4 |
-
nc: 80 # number of classes
|
5 |
-
depth_multiple: 1.0 # model depth multiple
|
6 |
-
width_multiple: 1.0 # layer channel multiple
|
7 |
-
anchors:
|
8 |
-
- [10,13, 16,30, 33,23] # P3/8
|
9 |
-
- [30,61, 62,45, 59,119] # P4/16
|
10 |
-
- [116,90, 156,198, 373,326] # P5/32
|
11 |
-
|
12 |
-
# YOLOv5 v6.0 backbone
|
13 |
-
backbone:
|
14 |
-
# [from, number, module, args]
|
15 |
-
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
16 |
-
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
17 |
-
[-1, 3, C3, [128]],
|
18 |
-
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
19 |
-
[-1, 6, C3, [256]],
|
20 |
-
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
21 |
-
[-1, 9, C3, [512]],
|
22 |
-
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
23 |
-
[-1, 3, C3, [1024]],
|
24 |
-
[-1, 1, SPPF, [1024, 5]], # 9
|
25 |
-
]
|
26 |
-
|
27 |
-
# YOLOv5 v6.0 FPN head
|
28 |
-
head:
|
29 |
-
[[-1, 3, C3, [1024, False]], # 10 (P5/32-large)
|
30 |
-
|
31 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
32 |
-
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
33 |
-
[-1, 1, Conv, [512, 1, 1]],
|
34 |
-
[-1, 3, C3, [512, False]], # 14 (P4/16-medium)
|
35 |
-
|
36 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
37 |
-
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
38 |
-
[-1, 1, Conv, [256, 1, 1]],
|
39 |
-
[-1, 3, C3, [256, False]], # 18 (P3/8-small)
|
40 |
-
|
41 |
-
[[18, 14, 10], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
42 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/models/hub/yolov5-p2.yaml
DELETED
@@ -1,54 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
|
3 |
-
# Parameters
|
4 |
-
nc: 80 # number of classes
|
5 |
-
depth_multiple: 1.0 # model depth multiple
|
6 |
-
width_multiple: 1.0 # layer channel multiple
|
7 |
-
anchors: 3 # AutoAnchor evolves 3 anchors per P output layer
|
8 |
-
|
9 |
-
# YOLOv5 v6.0 backbone
|
10 |
-
backbone:
|
11 |
-
# [from, number, module, args]
|
12 |
-
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
13 |
-
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
14 |
-
[-1, 3, C3, [128]],
|
15 |
-
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
16 |
-
[-1, 6, C3, [256]],
|
17 |
-
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
18 |
-
[-1, 9, C3, [512]],
|
19 |
-
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
20 |
-
[-1, 3, C3, [1024]],
|
21 |
-
[-1, 1, SPPF, [1024, 5]], # 9
|
22 |
-
]
|
23 |
-
|
24 |
-
# YOLOv5 v6.0 head with (P2, P3, P4, P5) outputs
|
25 |
-
head:
|
26 |
-
[[-1, 1, Conv, [512, 1, 1]],
|
27 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
28 |
-
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
29 |
-
[-1, 3, C3, [512, False]], # 13
|
30 |
-
|
31 |
-
[-1, 1, Conv, [256, 1, 1]],
|
32 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
33 |
-
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
34 |
-
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
35 |
-
|
36 |
-
[-1, 1, Conv, [128, 1, 1]],
|
37 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
38 |
-
[[-1, 2], 1, Concat, [1]], # cat backbone P2
|
39 |
-
[-1, 1, C3, [128, False]], # 21 (P2/4-xsmall)
|
40 |
-
|
41 |
-
[-1, 1, Conv, [128, 3, 2]],
|
42 |
-
[[-1, 18], 1, Concat, [1]], # cat head P3
|
43 |
-
[-1, 3, C3, [256, False]], # 24 (P3/8-small)
|
44 |
-
|
45 |
-
[-1, 1, Conv, [256, 3, 2]],
|
46 |
-
[[-1, 14], 1, Concat, [1]], # cat head P4
|
47 |
-
[-1, 3, C3, [512, False]], # 27 (P4/16-medium)
|
48 |
-
|
49 |
-
[-1, 1, Conv, [512, 3, 2]],
|
50 |
-
[[-1, 10], 1, Concat, [1]], # cat head P5
|
51 |
-
[-1, 3, C3, [1024, False]], # 30 (P5/32-large)
|
52 |
-
|
53 |
-
[[21, 24, 27, 30], 1, Detect, [nc, anchors]], # Detect(P2, P3, P4, P5)
|
54 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/models/hub/yolov5-p34.yaml
DELETED
@@ -1,41 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
|
3 |
-
# Parameters
|
4 |
-
nc: 80 # number of classes
|
5 |
-
depth_multiple: 0.33 # model depth multiple
|
6 |
-
width_multiple: 0.50 # layer channel multiple
|
7 |
-
anchors: 3 # AutoAnchor evolves 3 anchors per P output layer
|
8 |
-
|
9 |
-
# YOLOv5 v6.0 backbone
|
10 |
-
backbone:
|
11 |
-
# [from, number, module, args]
|
12 |
-
[ [ -1, 1, Conv, [ 64, 6, 2, 2 ] ], # 0-P1/2
|
13 |
-
[ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4
|
14 |
-
[ -1, 3, C3, [ 128 ] ],
|
15 |
-
[ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8
|
16 |
-
[ -1, 6, C3, [ 256 ] ],
|
17 |
-
[ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16
|
18 |
-
[ -1, 9, C3, [ 512 ] ],
|
19 |
-
[ -1, 1, Conv, [ 1024, 3, 2 ] ], # 7-P5/32
|
20 |
-
[ -1, 3, C3, [ 1024 ] ],
|
21 |
-
[ -1, 1, SPPF, [ 1024, 5 ] ], # 9
|
22 |
-
]
|
23 |
-
|
24 |
-
# YOLOv5 v6.0 head with (P3, P4) outputs
|
25 |
-
head:
|
26 |
-
[ [ -1, 1, Conv, [ 512, 1, 1 ] ],
|
27 |
-
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
28 |
-
[ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4
|
29 |
-
[ -1, 3, C3, [ 512, False ] ], # 13
|
30 |
-
|
31 |
-
[ -1, 1, Conv, [ 256, 1, 1 ] ],
|
32 |
-
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
33 |
-
[ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3
|
34 |
-
[ -1, 3, C3, [ 256, False ] ], # 17 (P3/8-small)
|
35 |
-
|
36 |
-
[ -1, 1, Conv, [ 256, 3, 2 ] ],
|
37 |
-
[ [ -1, 14 ], 1, Concat, [ 1 ] ], # cat head P4
|
38 |
-
[ -1, 3, C3, [ 512, False ] ], # 20 (P4/16-medium)
|
39 |
-
|
40 |
-
[ [ 17, 20 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4)
|
41 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/models/hub/yolov5-p6.yaml
DELETED
@@ -1,56 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
|
3 |
-
# Parameters
|
4 |
-
nc: 80 # number of classes
|
5 |
-
depth_multiple: 1.0 # model depth multiple
|
6 |
-
width_multiple: 1.0 # layer channel multiple
|
7 |
-
anchors: 3 # AutoAnchor evolves 3 anchors per P output layer
|
8 |
-
|
9 |
-
# YOLOv5 v6.0 backbone
|
10 |
-
backbone:
|
11 |
-
# [from, number, module, args]
|
12 |
-
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
13 |
-
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
14 |
-
[-1, 3, C3, [128]],
|
15 |
-
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
16 |
-
[-1, 6, C3, [256]],
|
17 |
-
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
18 |
-
[-1, 9, C3, [512]],
|
19 |
-
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
|
20 |
-
[-1, 3, C3, [768]],
|
21 |
-
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
|
22 |
-
[-1, 3, C3, [1024]],
|
23 |
-
[-1, 1, SPPF, [1024, 5]], # 11
|
24 |
-
]
|
25 |
-
|
26 |
-
# YOLOv5 v6.0 head with (P3, P4, P5, P6) outputs
|
27 |
-
head:
|
28 |
-
[[-1, 1, Conv, [768, 1, 1]],
|
29 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
30 |
-
[[-1, 8], 1, Concat, [1]], # cat backbone P5
|
31 |
-
[-1, 3, C3, [768, False]], # 15
|
32 |
-
|
33 |
-
[-1, 1, Conv, [512, 1, 1]],
|
34 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
35 |
-
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
36 |
-
[-1, 3, C3, [512, False]], # 19
|
37 |
-
|
38 |
-
[-1, 1, Conv, [256, 1, 1]],
|
39 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
40 |
-
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
41 |
-
[-1, 3, C3, [256, False]], # 23 (P3/8-small)
|
42 |
-
|
43 |
-
[-1, 1, Conv, [256, 3, 2]],
|
44 |
-
[[-1, 20], 1, Concat, [1]], # cat head P4
|
45 |
-
[-1, 3, C3, [512, False]], # 26 (P4/16-medium)
|
46 |
-
|
47 |
-
[-1, 1, Conv, [512, 3, 2]],
|
48 |
-
[[-1, 16], 1, Concat, [1]], # cat head P5
|
49 |
-
[-1, 3, C3, [768, False]], # 29 (P5/32-large)
|
50 |
-
|
51 |
-
[-1, 1, Conv, [768, 3, 2]],
|
52 |
-
[[-1, 12], 1, Concat, [1]], # cat head P6
|
53 |
-
[-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
|
54 |
-
|
55 |
-
[[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
56 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/models/hub/yolov5-p7.yaml
DELETED
@@ -1,67 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
|
3 |
-
# Parameters
|
4 |
-
nc: 80 # number of classes
|
5 |
-
depth_multiple: 1.0 # model depth multiple
|
6 |
-
width_multiple: 1.0 # layer channel multiple
|
7 |
-
anchors: 3 # AutoAnchor evolves 3 anchors per P output layer
|
8 |
-
|
9 |
-
# YOLOv5 v6.0 backbone
|
10 |
-
backbone:
|
11 |
-
# [from, number, module, args]
|
12 |
-
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
13 |
-
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
14 |
-
[-1, 3, C3, [128]],
|
15 |
-
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
16 |
-
[-1, 6, C3, [256]],
|
17 |
-
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
18 |
-
[-1, 9, C3, [512]],
|
19 |
-
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
|
20 |
-
[-1, 3, C3, [768]],
|
21 |
-
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
|
22 |
-
[-1, 3, C3, [1024]],
|
23 |
-
[-1, 1, Conv, [1280, 3, 2]], # 11-P7/128
|
24 |
-
[-1, 3, C3, [1280]],
|
25 |
-
[-1, 1, SPPF, [1280, 5]], # 13
|
26 |
-
]
|
27 |
-
|
28 |
-
# YOLOv5 v6.0 head with (P3, P4, P5, P6, P7) outputs
|
29 |
-
head:
|
30 |
-
[[-1, 1, Conv, [1024, 1, 1]],
|
31 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
32 |
-
[[-1, 10], 1, Concat, [1]], # cat backbone P6
|
33 |
-
[-1, 3, C3, [1024, False]], # 17
|
34 |
-
|
35 |
-
[-1, 1, Conv, [768, 1, 1]],
|
36 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
37 |
-
[[-1, 8], 1, Concat, [1]], # cat backbone P5
|
38 |
-
[-1, 3, C3, [768, False]], # 21
|
39 |
-
|
40 |
-
[-1, 1, Conv, [512, 1, 1]],
|
41 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
42 |
-
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
43 |
-
[-1, 3, C3, [512, False]], # 25
|
44 |
-
|
45 |
-
[-1, 1, Conv, [256, 1, 1]],
|
46 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
47 |
-
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
48 |
-
[-1, 3, C3, [256, False]], # 29 (P3/8-small)
|
49 |
-
|
50 |
-
[-1, 1, Conv, [256, 3, 2]],
|
51 |
-
[[-1, 26], 1, Concat, [1]], # cat head P4
|
52 |
-
[-1, 3, C3, [512, False]], # 32 (P4/16-medium)
|
53 |
-
|
54 |
-
[-1, 1, Conv, [512, 3, 2]],
|
55 |
-
[[-1, 22], 1, Concat, [1]], # cat head P5
|
56 |
-
[-1, 3, C3, [768, False]], # 35 (P5/32-large)
|
57 |
-
|
58 |
-
[-1, 1, Conv, [768, 3, 2]],
|
59 |
-
[[-1, 18], 1, Concat, [1]], # cat head P6
|
60 |
-
[-1, 3, C3, [1024, False]], # 38 (P6/64-xlarge)
|
61 |
-
|
62 |
-
[-1, 1, Conv, [1024, 3, 2]],
|
63 |
-
[[-1, 14], 1, Concat, [1]], # cat head P7
|
64 |
-
[-1, 3, C3, [1280, False]], # 41 (P7/128-xxlarge)
|
65 |
-
|
66 |
-
[[29, 32, 35, 38, 41], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6, P7)
|
67 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/models/hub/yolov5-panet.yaml
DELETED
@@ -1,48 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
|
3 |
-
# Parameters
|
4 |
-
nc: 80 # number of classes
|
5 |
-
depth_multiple: 1.0 # model depth multiple
|
6 |
-
width_multiple: 1.0 # layer channel multiple
|
7 |
-
anchors:
|
8 |
-
- [10,13, 16,30, 33,23] # P3/8
|
9 |
-
- [30,61, 62,45, 59,119] # P4/16
|
10 |
-
- [116,90, 156,198, 373,326] # P5/32
|
11 |
-
|
12 |
-
# YOLOv5 v6.0 backbone
|
13 |
-
backbone:
|
14 |
-
# [from, number, module, args]
|
15 |
-
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
16 |
-
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
17 |
-
[-1, 3, C3, [128]],
|
18 |
-
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
19 |
-
[-1, 6, C3, [256]],
|
20 |
-
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
21 |
-
[-1, 9, C3, [512]],
|
22 |
-
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
23 |
-
[-1, 3, C3, [1024]],
|
24 |
-
[-1, 1, SPPF, [1024, 5]], # 9
|
25 |
-
]
|
26 |
-
|
27 |
-
# YOLOv5 v6.0 PANet head
|
28 |
-
head:
|
29 |
-
[[-1, 1, Conv, [512, 1, 1]],
|
30 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
31 |
-
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
32 |
-
[-1, 3, C3, [512, False]], # 13
|
33 |
-
|
34 |
-
[-1, 1, Conv, [256, 1, 1]],
|
35 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
36 |
-
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
37 |
-
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
38 |
-
|
39 |
-
[-1, 1, Conv, [256, 3, 2]],
|
40 |
-
[[-1, 14], 1, Concat, [1]], # cat head P4
|
41 |
-
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
42 |
-
|
43 |
-
[-1, 1, Conv, [512, 3, 2]],
|
44 |
-
[[-1, 10], 1, Concat, [1]], # cat head P5
|
45 |
-
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
46 |
-
|
47 |
-
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
48 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/models/hub/yolov5l6.yaml
DELETED
@@ -1,60 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
|
3 |
-
# Parameters
|
4 |
-
nc: 80 # number of classes
|
5 |
-
depth_multiple: 1.0 # model depth multiple
|
6 |
-
width_multiple: 1.0 # layer channel multiple
|
7 |
-
anchors:
|
8 |
-
- [19,27, 44,40, 38,94] # P3/8
|
9 |
-
- [96,68, 86,152, 180,137] # P4/16
|
10 |
-
- [140,301, 303,264, 238,542] # P5/32
|
11 |
-
- [436,615, 739,380, 925,792] # P6/64
|
12 |
-
|
13 |
-
# YOLOv5 v6.0 backbone
|
14 |
-
backbone:
|
15 |
-
# [from, number, module, args]
|
16 |
-
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
17 |
-
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
18 |
-
[-1, 3, C3, [128]],
|
19 |
-
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
20 |
-
[-1, 6, C3, [256]],
|
21 |
-
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
22 |
-
[-1, 9, C3, [512]],
|
23 |
-
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
|
24 |
-
[-1, 3, C3, [768]],
|
25 |
-
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
|
26 |
-
[-1, 3, C3, [1024]],
|
27 |
-
[-1, 1, SPPF, [1024, 5]], # 11
|
28 |
-
]
|
29 |
-
|
30 |
-
# YOLOv5 v6.0 head
|
31 |
-
head:
|
32 |
-
[[-1, 1, Conv, [768, 1, 1]],
|
33 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
34 |
-
[[-1, 8], 1, Concat, [1]], # cat backbone P5
|
35 |
-
[-1, 3, C3, [768, False]], # 15
|
36 |
-
|
37 |
-
[-1, 1, Conv, [512, 1, 1]],
|
38 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
39 |
-
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
40 |
-
[-1, 3, C3, [512, False]], # 19
|
41 |
-
|
42 |
-
[-1, 1, Conv, [256, 1, 1]],
|
43 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
44 |
-
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
45 |
-
[-1, 3, C3, [256, False]], # 23 (P3/8-small)
|
46 |
-
|
47 |
-
[-1, 1, Conv, [256, 3, 2]],
|
48 |
-
[[-1, 20], 1, Concat, [1]], # cat head P4
|
49 |
-
[-1, 3, C3, [512, False]], # 26 (P4/16-medium)
|
50 |
-
|
51 |
-
[-1, 1, Conv, [512, 3, 2]],
|
52 |
-
[[-1, 16], 1, Concat, [1]], # cat head P5
|
53 |
-
[-1, 3, C3, [768, False]], # 29 (P5/32-large)
|
54 |
-
|
55 |
-
[-1, 1, Conv, [768, 3, 2]],
|
56 |
-
[[-1, 12], 1, Concat, [1]], # cat head P6
|
57 |
-
[-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
|
58 |
-
|
59 |
-
[[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
60 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/models/hub/yolov5m6.yaml
DELETED
@@ -1,60 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
|
3 |
-
# Parameters
|
4 |
-
nc: 80 # number of classes
|
5 |
-
depth_multiple: 0.67 # model depth multiple
|
6 |
-
width_multiple: 0.75 # layer channel multiple
|
7 |
-
anchors:
|
8 |
-
- [19,27, 44,40, 38,94] # P3/8
|
9 |
-
- [96,68, 86,152, 180,137] # P4/16
|
10 |
-
- [140,301, 303,264, 238,542] # P5/32
|
11 |
-
- [436,615, 739,380, 925,792] # P6/64
|
12 |
-
|
13 |
-
# YOLOv5 v6.0 backbone
|
14 |
-
backbone:
|
15 |
-
# [from, number, module, args]
|
16 |
-
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
17 |
-
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
18 |
-
[-1, 3, C3, [128]],
|
19 |
-
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
20 |
-
[-1, 6, C3, [256]],
|
21 |
-
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
22 |
-
[-1, 9, C3, [512]],
|
23 |
-
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
|
24 |
-
[-1, 3, C3, [768]],
|
25 |
-
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
|
26 |
-
[-1, 3, C3, [1024]],
|
27 |
-
[-1, 1, SPPF, [1024, 5]], # 11
|
28 |
-
]
|
29 |
-
|
30 |
-
# YOLOv5 v6.0 head
|
31 |
-
head:
|
32 |
-
[[-1, 1, Conv, [768, 1, 1]],
|
33 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
34 |
-
[[-1, 8], 1, Concat, [1]], # cat backbone P5
|
35 |
-
[-1, 3, C3, [768, False]], # 15
|
36 |
-
|
37 |
-
[-1, 1, Conv, [512, 1, 1]],
|
38 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
39 |
-
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
40 |
-
[-1, 3, C3, [512, False]], # 19
|
41 |
-
|
42 |
-
[-1, 1, Conv, [256, 1, 1]],
|
43 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
44 |
-
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
45 |
-
[-1, 3, C3, [256, False]], # 23 (P3/8-small)
|
46 |
-
|
47 |
-
[-1, 1, Conv, [256, 3, 2]],
|
48 |
-
[[-1, 20], 1, Concat, [1]], # cat head P4
|
49 |
-
[-1, 3, C3, [512, False]], # 26 (P4/16-medium)
|
50 |
-
|
51 |
-
[-1, 1, Conv, [512, 3, 2]],
|
52 |
-
[[-1, 16], 1, Concat, [1]], # cat head P5
|
53 |
-
[-1, 3, C3, [768, False]], # 29 (P5/32-large)
|
54 |
-
|
55 |
-
[-1, 1, Conv, [768, 3, 2]],
|
56 |
-
[[-1, 12], 1, Concat, [1]], # cat head P6
|
57 |
-
[-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
|
58 |
-
|
59 |
-
[[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
60 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/models/hub/yolov5n6.yaml
DELETED
@@ -1,60 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
|
3 |
-
# Parameters
|
4 |
-
nc: 80 # number of classes
|
5 |
-
depth_multiple: 0.33 # model depth multiple
|
6 |
-
width_multiple: 0.25 # layer channel multiple
|
7 |
-
anchors:
|
8 |
-
- [19,27, 44,40, 38,94] # P3/8
|
9 |
-
- [96,68, 86,152, 180,137] # P4/16
|
10 |
-
- [140,301, 303,264, 238,542] # P5/32
|
11 |
-
- [436,615, 739,380, 925,792] # P6/64
|
12 |
-
|
13 |
-
# YOLOv5 v6.0 backbone
|
14 |
-
backbone:
|
15 |
-
# [from, number, module, args]
|
16 |
-
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
17 |
-
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
18 |
-
[-1, 3, C3, [128]],
|
19 |
-
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
20 |
-
[-1, 6, C3, [256]],
|
21 |
-
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
22 |
-
[-1, 9, C3, [512]],
|
23 |
-
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
|
24 |
-
[-1, 3, C3, [768]],
|
25 |
-
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
|
26 |
-
[-1, 3, C3, [1024]],
|
27 |
-
[-1, 1, SPPF, [1024, 5]], # 11
|
28 |
-
]
|
29 |
-
|
30 |
-
# YOLOv5 v6.0 head
|
31 |
-
head:
|
32 |
-
[[-1, 1, Conv, [768, 1, 1]],
|
33 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
34 |
-
[[-1, 8], 1, Concat, [1]], # cat backbone P5
|
35 |
-
[-1, 3, C3, [768, False]], # 15
|
36 |
-
|
37 |
-
[-1, 1, Conv, [512, 1, 1]],
|
38 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
39 |
-
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
40 |
-
[-1, 3, C3, [512, False]], # 19
|
41 |
-
|
42 |
-
[-1, 1, Conv, [256, 1, 1]],
|
43 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
44 |
-
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
45 |
-
[-1, 3, C3, [256, False]], # 23 (P3/8-small)
|
46 |
-
|
47 |
-
[-1, 1, Conv, [256, 3, 2]],
|
48 |
-
[[-1, 20], 1, Concat, [1]], # cat head P4
|
49 |
-
[-1, 3, C3, [512, False]], # 26 (P4/16-medium)
|
50 |
-
|
51 |
-
[-1, 1, Conv, [512, 3, 2]],
|
52 |
-
[[-1, 16], 1, Concat, [1]], # cat head P5
|
53 |
-
[-1, 3, C3, [768, False]], # 29 (P5/32-large)
|
54 |
-
|
55 |
-
[-1, 1, Conv, [768, 3, 2]],
|
56 |
-
[[-1, 12], 1, Concat, [1]], # cat head P6
|
57 |
-
[-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
|
58 |
-
|
59 |
-
[[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
60 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/models/hub/yolov5s-ghost.yaml
DELETED
@@ -1,48 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
|
3 |
-
# Parameters
|
4 |
-
nc: 80 # number of classes
|
5 |
-
depth_multiple: 0.33 # model depth multiple
|
6 |
-
width_multiple: 0.50 # layer channel multiple
|
7 |
-
anchors:
|
8 |
-
- [10,13, 16,30, 33,23] # P3/8
|
9 |
-
- [30,61, 62,45, 59,119] # P4/16
|
10 |
-
- [116,90, 156,198, 373,326] # P5/32
|
11 |
-
|
12 |
-
# YOLOv5 v6.0 backbone
|
13 |
-
backbone:
|
14 |
-
# [from, number, module, args]
|
15 |
-
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
16 |
-
[-1, 1, GhostConv, [128, 3, 2]], # 1-P2/4
|
17 |
-
[-1, 3, C3Ghost, [128]],
|
18 |
-
[-1, 1, GhostConv, [256, 3, 2]], # 3-P3/8
|
19 |
-
[-1, 6, C3Ghost, [256]],
|
20 |
-
[-1, 1, GhostConv, [512, 3, 2]], # 5-P4/16
|
21 |
-
[-1, 9, C3Ghost, [512]],
|
22 |
-
[-1, 1, GhostConv, [1024, 3, 2]], # 7-P5/32
|
23 |
-
[-1, 3, C3Ghost, [1024]],
|
24 |
-
[-1, 1, SPPF, [1024, 5]], # 9
|
25 |
-
]
|
26 |
-
|
27 |
-
# YOLOv5 v6.0 head
|
28 |
-
head:
|
29 |
-
[[-1, 1, GhostConv, [512, 1, 1]],
|
30 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
31 |
-
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
32 |
-
[-1, 3, C3Ghost, [512, False]], # 13
|
33 |
-
|
34 |
-
[-1, 1, GhostConv, [256, 1, 1]],
|
35 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
36 |
-
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
37 |
-
[-1, 3, C3Ghost, [256, False]], # 17 (P3/8-small)
|
38 |
-
|
39 |
-
[-1, 1, GhostConv, [256, 3, 2]],
|
40 |
-
[[-1, 14], 1, Concat, [1]], # cat head P4
|
41 |
-
[-1, 3, C3Ghost, [512, False]], # 20 (P4/16-medium)
|
42 |
-
|
43 |
-
[-1, 1, GhostConv, [512, 3, 2]],
|
44 |
-
[[-1, 10], 1, Concat, [1]], # cat head P5
|
45 |
-
[-1, 3, C3Ghost, [1024, False]], # 23 (P5/32-large)
|
46 |
-
|
47 |
-
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
48 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/models/hub/yolov5s-transformer.yaml
DELETED
@@ -1,48 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
|
3 |
-
# Parameters
|
4 |
-
nc: 80 # number of classes
|
5 |
-
depth_multiple: 0.33 # model depth multiple
|
6 |
-
width_multiple: 0.50 # layer channel multiple
|
7 |
-
anchors:
|
8 |
-
- [10,13, 16,30, 33,23] # P3/8
|
9 |
-
- [30,61, 62,45, 59,119] # P4/16
|
10 |
-
- [116,90, 156,198, 373,326] # P5/32
|
11 |
-
|
12 |
-
# YOLOv5 v6.0 backbone
|
13 |
-
backbone:
|
14 |
-
# [from, number, module, args]
|
15 |
-
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
16 |
-
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
17 |
-
[-1, 3, C3, [128]],
|
18 |
-
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
19 |
-
[-1, 6, C3, [256]],
|
20 |
-
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
21 |
-
[-1, 9, C3, [512]],
|
22 |
-
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
23 |
-
[-1, 3, C3TR, [1024]], # 9 <--- C3TR() Transformer module
|
24 |
-
[-1, 1, SPPF, [1024, 5]], # 9
|
25 |
-
]
|
26 |
-
|
27 |
-
# YOLOv5 v6.0 head
|
28 |
-
head:
|
29 |
-
[[-1, 1, Conv, [512, 1, 1]],
|
30 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
31 |
-
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
32 |
-
[-1, 3, C3, [512, False]], # 13
|
33 |
-
|
34 |
-
[-1, 1, Conv, [256, 1, 1]],
|
35 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
36 |
-
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
37 |
-
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
38 |
-
|
39 |
-
[-1, 1, Conv, [256, 3, 2]],
|
40 |
-
[[-1, 14], 1, Concat, [1]], # cat head P4
|
41 |
-
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
42 |
-
|
43 |
-
[-1, 1, Conv, [512, 3, 2]],
|
44 |
-
[[-1, 10], 1, Concat, [1]], # cat head P5
|
45 |
-
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
46 |
-
|
47 |
-
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
48 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/models/hub/yolov5s6.yaml
DELETED
@@ -1,60 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
|
3 |
-
# Parameters
|
4 |
-
nc: 80 # number of classes
|
5 |
-
depth_multiple: 0.33 # model depth multiple
|
6 |
-
width_multiple: 0.50 # layer channel multiple
|
7 |
-
anchors:
|
8 |
-
- [19,27, 44,40, 38,94] # P3/8
|
9 |
-
- [96,68, 86,152, 180,137] # P4/16
|
10 |
-
- [140,301, 303,264, 238,542] # P5/32
|
11 |
-
- [436,615, 739,380, 925,792] # P6/64
|
12 |
-
|
13 |
-
# YOLOv5 v6.0 backbone
|
14 |
-
backbone:
|
15 |
-
# [from, number, module, args]
|
16 |
-
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
17 |
-
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
18 |
-
[-1, 3, C3, [128]],
|
19 |
-
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
20 |
-
[-1, 6, C3, [256]],
|
21 |
-
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
22 |
-
[-1, 9, C3, [512]],
|
23 |
-
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
|
24 |
-
[-1, 3, C3, [768]],
|
25 |
-
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
|
26 |
-
[-1, 3, C3, [1024]],
|
27 |
-
[-1, 1, SPPF, [1024, 5]], # 11
|
28 |
-
]
|
29 |
-
|
30 |
-
# YOLOv5 v6.0 head
|
31 |
-
head:
|
32 |
-
[[-1, 1, Conv, [768, 1, 1]],
|
33 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
34 |
-
[[-1, 8], 1, Concat, [1]], # cat backbone P5
|
35 |
-
[-1, 3, C3, [768, False]], # 15
|
36 |
-
|
37 |
-
[-1, 1, Conv, [512, 1, 1]],
|
38 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
39 |
-
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
40 |
-
[-1, 3, C3, [512, False]], # 19
|
41 |
-
|
42 |
-
[-1, 1, Conv, [256, 1, 1]],
|
43 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
44 |
-
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
45 |
-
[-1, 3, C3, [256, False]], # 23 (P3/8-small)
|
46 |
-
|
47 |
-
[-1, 1, Conv, [256, 3, 2]],
|
48 |
-
[[-1, 20], 1, Concat, [1]], # cat head P4
|
49 |
-
[-1, 3, C3, [512, False]], # 26 (P4/16-medium)
|
50 |
-
|
51 |
-
[-1, 1, Conv, [512, 3, 2]],
|
52 |
-
[[-1, 16], 1, Concat, [1]], # cat head P5
|
53 |
-
[-1, 3, C3, [768, False]], # 29 (P5/32-large)
|
54 |
-
|
55 |
-
[-1, 1, Conv, [768, 3, 2]],
|
56 |
-
[[-1, 12], 1, Concat, [1]], # cat head P6
|
57 |
-
[-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
|
58 |
-
|
59 |
-
[[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
60 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/models/hub/yolov5x6.yaml
DELETED
@@ -1,60 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
|
3 |
-
# Parameters
|
4 |
-
nc: 80 # number of classes
|
5 |
-
depth_multiple: 1.33 # model depth multiple
|
6 |
-
width_multiple: 1.25 # layer channel multiple
|
7 |
-
anchors:
|
8 |
-
- [19,27, 44,40, 38,94] # P3/8
|
9 |
-
- [96,68, 86,152, 180,137] # P4/16
|
10 |
-
- [140,301, 303,264, 238,542] # P5/32
|
11 |
-
- [436,615, 739,380, 925,792] # P6/64
|
12 |
-
|
13 |
-
# YOLOv5 v6.0 backbone
|
14 |
-
backbone:
|
15 |
-
# [from, number, module, args]
|
16 |
-
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
17 |
-
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
18 |
-
[-1, 3, C3, [128]],
|
19 |
-
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
20 |
-
[-1, 6, C3, [256]],
|
21 |
-
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
22 |
-
[-1, 9, C3, [512]],
|
23 |
-
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
|
24 |
-
[-1, 3, C3, [768]],
|
25 |
-
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
|
26 |
-
[-1, 3, C3, [1024]],
|
27 |
-
[-1, 1, SPPF, [1024, 5]], # 11
|
28 |
-
]
|
29 |
-
|
30 |
-
# YOLOv5 v6.0 head
|
31 |
-
head:
|
32 |
-
[[-1, 1, Conv, [768, 1, 1]],
|
33 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
34 |
-
[[-1, 8], 1, Concat, [1]], # cat backbone P5
|
35 |
-
[-1, 3, C3, [768, False]], # 15
|
36 |
-
|
37 |
-
[-1, 1, Conv, [512, 1, 1]],
|
38 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
39 |
-
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
40 |
-
[-1, 3, C3, [512, False]], # 19
|
41 |
-
|
42 |
-
[-1, 1, Conv, [256, 1, 1]],
|
43 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
44 |
-
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
45 |
-
[-1, 3, C3, [256, False]], # 23 (P3/8-small)
|
46 |
-
|
47 |
-
[-1, 1, Conv, [256, 3, 2]],
|
48 |
-
[[-1, 20], 1, Concat, [1]], # cat head P4
|
49 |
-
[-1, 3, C3, [512, False]], # 26 (P4/16-medium)
|
50 |
-
|
51 |
-
[-1, 1, Conv, [512, 3, 2]],
|
52 |
-
[[-1, 16], 1, Concat, [1]], # cat head P5
|
53 |
-
[-1, 3, C3, [768, False]], # 29 (P5/32-large)
|
54 |
-
|
55 |
-
[-1, 1, Conv, [768, 3, 2]],
|
56 |
-
[[-1, 12], 1, Concat, [1]], # cat head P6
|
57 |
-
[-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
|
58 |
-
|
59 |
-
[[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
60 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/models/tf.py
DELETED
@@ -1,466 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
"""
|
3 |
-
TensorFlow, Keras and TFLite versions of YOLOv5
|
4 |
-
Authored by https://github.com/zldrobit in PR https://github.com/ultralytics/yolov5/pull/1127
|
5 |
-
|
6 |
-
Usage:
|
7 |
-
$ python models/tf.py --weights yolov5s.pt
|
8 |
-
|
9 |
-
Export:
|
10 |
-
$ python path/to/export.py --weights yolov5s.pt --include saved_model pb tflite tfjs
|
11 |
-
"""
|
12 |
-
|
13 |
-
import argparse
|
14 |
-
import sys
|
15 |
-
from copy import deepcopy
|
16 |
-
from pathlib import Path
|
17 |
-
|
18 |
-
FILE = Path(__file__).resolve()
|
19 |
-
ROOT = FILE.parents[1] # YOLOv5 root directory
|
20 |
-
if str(ROOT) not in sys.path:
|
21 |
-
sys.path.append(str(ROOT)) # add ROOT to PATH
|
22 |
-
# ROOT = ROOT.relative_to(Path.cwd()) # relative
|
23 |
-
|
24 |
-
import numpy as np
|
25 |
-
import tensorflow as tf
|
26 |
-
import torch
|
27 |
-
import torch.nn as nn
|
28 |
-
from tensorflow import keras
|
29 |
-
|
30 |
-
from models.common import C3, SPP, SPPF, Bottleneck, BottleneckCSP, Concat, Conv, DWConv, Focus, autopad
|
31 |
-
from models.experimental import CrossConv, MixConv2d, attempt_load
|
32 |
-
from models.yolo import Detect
|
33 |
-
from utils.activations import SiLU
|
34 |
-
from utils.general import LOGGER, make_divisible, print_args
|
35 |
-
|
36 |
-
|
37 |
-
class TFBN(keras.layers.Layer):
|
38 |
-
# TensorFlow BatchNormalization wrapper
|
39 |
-
def __init__(self, w=None):
|
40 |
-
super().__init__()
|
41 |
-
self.bn = keras.layers.BatchNormalization(
|
42 |
-
beta_initializer=keras.initializers.Constant(w.bias.numpy()),
|
43 |
-
gamma_initializer=keras.initializers.Constant(w.weight.numpy()),
|
44 |
-
moving_mean_initializer=keras.initializers.Constant(w.running_mean.numpy()),
|
45 |
-
moving_variance_initializer=keras.initializers.Constant(w.running_var.numpy()),
|
46 |
-
epsilon=w.eps)
|
47 |
-
|
48 |
-
def call(self, inputs):
|
49 |
-
return self.bn(inputs)
|
50 |
-
|
51 |
-
|
52 |
-
class TFPad(keras.layers.Layer):
|
53 |
-
def __init__(self, pad):
|
54 |
-
super().__init__()
|
55 |
-
self.pad = tf.constant([[0, 0], [pad, pad], [pad, pad], [0, 0]])
|
56 |
-
|
57 |
-
def call(self, inputs):
|
58 |
-
return tf.pad(inputs, self.pad, mode='constant', constant_values=0)
|
59 |
-
|
60 |
-
|
61 |
-
class TFConv(keras.layers.Layer):
|
62 |
-
# Standard convolution
|
63 |
-
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
|
64 |
-
# ch_in, ch_out, weights, kernel, stride, padding, groups
|
65 |
-
super().__init__()
|
66 |
-
assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
|
67 |
-
assert isinstance(k, int), "Convolution with multiple kernels are not allowed."
|
68 |
-
# TensorFlow convolution padding is inconsistent with PyTorch (e.g. k=3 s=2 'SAME' padding)
|
69 |
-
# see https://stackoverflow.com/questions/52975843/comparing-conv2d-with-padding-between-tensorflow-and-pytorch
|
70 |
-
|
71 |
-
conv = keras.layers.Conv2D(
|
72 |
-
c2, k, s, 'SAME' if s == 1 else 'VALID', use_bias=False if hasattr(w, 'bn') else True,
|
73 |
-
kernel_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()),
|
74 |
-
bias_initializer='zeros' if hasattr(w, 'bn') else keras.initializers.Constant(w.conv.bias.numpy()))
|
75 |
-
self.conv = conv if s == 1 else keras.Sequential([TFPad(autopad(k, p)), conv])
|
76 |
-
self.bn = TFBN(w.bn) if hasattr(w, 'bn') else tf.identity
|
77 |
-
|
78 |
-
# YOLOv5 activations
|
79 |
-
if isinstance(w.act, nn.LeakyReLU):
|
80 |
-
self.act = (lambda x: keras.activations.relu(x, alpha=0.1)) if act else tf.identity
|
81 |
-
elif isinstance(w.act, nn.Hardswish):
|
82 |
-
self.act = (lambda x: x * tf.nn.relu6(x + 3) * 0.166666667) if act else tf.identity
|
83 |
-
elif isinstance(w.act, (nn.SiLU, SiLU)):
|
84 |
-
self.act = (lambda x: keras.activations.swish(x)) if act else tf.identity
|
85 |
-
else:
|
86 |
-
raise Exception(f'no matching TensorFlow activation found for {w.act}')
|
87 |
-
|
88 |
-
def call(self, inputs):
|
89 |
-
return self.act(self.bn(self.conv(inputs)))
|
90 |
-
|
91 |
-
|
92 |
-
class TFFocus(keras.layers.Layer):
|
93 |
-
# Focus wh information into c-space
|
94 |
-
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
|
95 |
-
# ch_in, ch_out, kernel, stride, padding, groups
|
96 |
-
super().__init__()
|
97 |
-
self.conv = TFConv(c1 * 4, c2, k, s, p, g, act, w.conv)
|
98 |
-
|
99 |
-
def call(self, inputs): # x(b,w,h,c) -> y(b,w/2,h/2,4c)
|
100 |
-
# inputs = inputs / 255 # normalize 0-255 to 0-1
|
101 |
-
return self.conv(tf.concat([inputs[:, ::2, ::2, :],
|
102 |
-
inputs[:, 1::2, ::2, :],
|
103 |
-
inputs[:, ::2, 1::2, :],
|
104 |
-
inputs[:, 1::2, 1::2, :]], 3))
|
105 |
-
|
106 |
-
|
107 |
-
class TFBottleneck(keras.layers.Layer):
|
108 |
-
# Standard bottleneck
|
109 |
-
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5, w=None): # ch_in, ch_out, shortcut, groups, expansion
|
110 |
-
super().__init__()
|
111 |
-
c_ = int(c2 * e) # hidden channels
|
112 |
-
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
|
113 |
-
self.cv2 = TFConv(c_, c2, 3, 1, g=g, w=w.cv2)
|
114 |
-
self.add = shortcut and c1 == c2
|
115 |
-
|
116 |
-
def call(self, inputs):
|
117 |
-
return inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs))
|
118 |
-
|
119 |
-
|
120 |
-
class TFConv2d(keras.layers.Layer):
|
121 |
-
# Substitution for PyTorch nn.Conv2D
|
122 |
-
def __init__(self, c1, c2, k, s=1, g=1, bias=True, w=None):
|
123 |
-
super().__init__()
|
124 |
-
assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
|
125 |
-
self.conv = keras.layers.Conv2D(
|
126 |
-
c2, k, s, 'VALID', use_bias=bias,
|
127 |
-
kernel_initializer=keras.initializers.Constant(w.weight.permute(2, 3, 1, 0).numpy()),
|
128 |
-
bias_initializer=keras.initializers.Constant(w.bias.numpy()) if bias else None, )
|
129 |
-
|
130 |
-
def call(self, inputs):
|
131 |
-
return self.conv(inputs)
|
132 |
-
|
133 |
-
|
134 |
-
class TFBottleneckCSP(keras.layers.Layer):
|
135 |
-
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
|
136 |
-
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
|
137 |
-
# ch_in, ch_out, number, shortcut, groups, expansion
|
138 |
-
super().__init__()
|
139 |
-
c_ = int(c2 * e) # hidden channels
|
140 |
-
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
|
141 |
-
self.cv2 = TFConv2d(c1, c_, 1, 1, bias=False, w=w.cv2)
|
142 |
-
self.cv3 = TFConv2d(c_, c_, 1, 1, bias=False, w=w.cv3)
|
143 |
-
self.cv4 = TFConv(2 * c_, c2, 1, 1, w=w.cv4)
|
144 |
-
self.bn = TFBN(w.bn)
|
145 |
-
self.act = lambda x: keras.activations.relu(x, alpha=0.1)
|
146 |
-
self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)])
|
147 |
-
|
148 |
-
def call(self, inputs):
|
149 |
-
y1 = self.cv3(self.m(self.cv1(inputs)))
|
150 |
-
y2 = self.cv2(inputs)
|
151 |
-
return self.cv4(self.act(self.bn(tf.concat((y1, y2), axis=3))))
|
152 |
-
|
153 |
-
|
154 |
-
class TFC3(keras.layers.Layer):
|
155 |
-
# CSP Bottleneck with 3 convolutions
|
156 |
-
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
|
157 |
-
# ch_in, ch_out, number, shortcut, groups, expansion
|
158 |
-
super().__init__()
|
159 |
-
c_ = int(c2 * e) # hidden channels
|
160 |
-
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
|
161 |
-
self.cv2 = TFConv(c1, c_, 1, 1, w=w.cv2)
|
162 |
-
self.cv3 = TFConv(2 * c_, c2, 1, 1, w=w.cv3)
|
163 |
-
self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)])
|
164 |
-
|
165 |
-
def call(self, inputs):
|
166 |
-
return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3))
|
167 |
-
|
168 |
-
|
169 |
-
class TFSPP(keras.layers.Layer):
|
170 |
-
# Spatial pyramid pooling layer used in YOLOv3-SPP
|
171 |
-
def __init__(self, c1, c2, k=(5, 9, 13), w=None):
|
172 |
-
super().__init__()
|
173 |
-
c_ = c1 // 2 # hidden channels
|
174 |
-
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
|
175 |
-
self.cv2 = TFConv(c_ * (len(k) + 1), c2, 1, 1, w=w.cv2)
|
176 |
-
self.m = [keras.layers.MaxPool2D(pool_size=x, strides=1, padding='SAME') for x in k]
|
177 |
-
|
178 |
-
def call(self, inputs):
|
179 |
-
x = self.cv1(inputs)
|
180 |
-
return self.cv2(tf.concat([x] + [m(x) for m in self.m], 3))
|
181 |
-
|
182 |
-
|
183 |
-
class TFSPPF(keras.layers.Layer):
|
184 |
-
# Spatial pyramid pooling-Fast layer
|
185 |
-
def __init__(self, c1, c2, k=5, w=None):
|
186 |
-
super().__init__()
|
187 |
-
c_ = c1 // 2 # hidden channels
|
188 |
-
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
|
189 |
-
self.cv2 = TFConv(c_ * 4, c2, 1, 1, w=w.cv2)
|
190 |
-
self.m = keras.layers.MaxPool2D(pool_size=k, strides=1, padding='SAME')
|
191 |
-
|
192 |
-
def call(self, inputs):
|
193 |
-
x = self.cv1(inputs)
|
194 |
-
y1 = self.m(x)
|
195 |
-
y2 = self.m(y1)
|
196 |
-
return self.cv2(tf.concat([x, y1, y2, self.m(y2)], 3))
|
197 |
-
|
198 |
-
|
199 |
-
class TFDetect(keras.layers.Layer):
|
200 |
-
def __init__(self, nc=80, anchors=(), ch=(), imgsz=(640, 640), w=None): # detection layer
|
201 |
-
super().__init__()
|
202 |
-
self.stride = tf.convert_to_tensor(w.stride.numpy(), dtype=tf.float32)
|
203 |
-
self.nc = nc # number of classes
|
204 |
-
self.no = nc + 5 # number of outputs per anchor
|
205 |
-
self.nl = len(anchors) # number of detection layers
|
206 |
-
self.na = len(anchors[0]) // 2 # number of anchors
|
207 |
-
self.grid = [tf.zeros(1)] * self.nl # init grid
|
208 |
-
self.anchors = tf.convert_to_tensor(w.anchors.numpy(), dtype=tf.float32)
|
209 |
-
self.anchor_grid = tf.reshape(self.anchors * tf.reshape(self.stride, [self.nl, 1, 1]),
|
210 |
-
[self.nl, 1, -1, 1, 2])
|
211 |
-
self.m = [TFConv2d(x, self.no * self.na, 1, w=w.m[i]) for i, x in enumerate(ch)]
|
212 |
-
self.training = False # set to False after building model
|
213 |
-
self.imgsz = imgsz
|
214 |
-
for i in range(self.nl):
|
215 |
-
ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i]
|
216 |
-
self.grid[i] = self._make_grid(nx, ny)
|
217 |
-
|
218 |
-
def call(self, inputs):
|
219 |
-
z = [] # inference output
|
220 |
-
x = []
|
221 |
-
for i in range(self.nl):
|
222 |
-
x.append(self.m[i](inputs[i]))
|
223 |
-
# x(bs,20,20,255) to x(bs,3,20,20,85)
|
224 |
-
ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i]
|
225 |
-
x[i] = tf.reshape(x[i], [-1, ny * nx, self.na, self.no])
|
226 |
-
|
227 |
-
if not self.training: # inference
|
228 |
-
y = tf.sigmoid(x[i])
|
229 |
-
grid = tf.transpose(self.grid[i], [0, 2, 1, 3]) - 0.5
|
230 |
-
anchor_grid = tf.transpose(self.anchor_grid[i], [0, 2, 1, 3]) * 4
|
231 |
-
xy = (y[..., 0:2] * 2 + grid) * self.stride[i] # xy
|
232 |
-
wh = y[..., 2:4] ** 2 * anchor_grid
|
233 |
-
# Normalize xywh to 0-1 to reduce calibration error
|
234 |
-
xy /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32)
|
235 |
-
wh /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32)
|
236 |
-
y = tf.concat([xy, wh, y[..., 4:]], -1)
|
237 |
-
z.append(tf.reshape(y, [-1, self.na * ny * nx, self.no]))
|
238 |
-
|
239 |
-
return tf.transpose(x, [0, 2, 1, 3]) if self.training else (tf.concat(z, 1), x)
|
240 |
-
|
241 |
-
@staticmethod
|
242 |
-
def _make_grid(nx=20, ny=20):
|
243 |
-
# yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
|
244 |
-
# return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
|
245 |
-
xv, yv = tf.meshgrid(tf.range(nx), tf.range(ny))
|
246 |
-
return tf.cast(tf.reshape(tf.stack([xv, yv], 2), [1, 1, ny * nx, 2]), dtype=tf.float32)
|
247 |
-
|
248 |
-
|
249 |
-
class TFUpsample(keras.layers.Layer):
|
250 |
-
def __init__(self, size, scale_factor, mode, w=None): # warning: all arguments needed including 'w'
|
251 |
-
super().__init__()
|
252 |
-
assert scale_factor == 2, "scale_factor must be 2"
|
253 |
-
self.upsample = lambda x: tf.image.resize(x, (x.shape[1] * 2, x.shape[2] * 2), method=mode)
|
254 |
-
# self.upsample = keras.layers.UpSampling2D(size=scale_factor, interpolation=mode)
|
255 |
-
# with default arguments: align_corners=False, half_pixel_centers=False
|
256 |
-
# self.upsample = lambda x: tf.raw_ops.ResizeNearestNeighbor(images=x,
|
257 |
-
# size=(x.shape[1] * 2, x.shape[2] * 2))
|
258 |
-
|
259 |
-
def call(self, inputs):
|
260 |
-
return self.upsample(inputs)
|
261 |
-
|
262 |
-
|
263 |
-
class TFConcat(keras.layers.Layer):
|
264 |
-
def __init__(self, dimension=1, w=None):
|
265 |
-
super().__init__()
|
266 |
-
assert dimension == 1, "convert only NCHW to NHWC concat"
|
267 |
-
self.d = 3
|
268 |
-
|
269 |
-
def call(self, inputs):
|
270 |
-
return tf.concat(inputs, self.d)
|
271 |
-
|
272 |
-
|
273 |
-
def parse_model(d, ch, model, imgsz): # model_dict, input_channels(3)
|
274 |
-
LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}")
|
275 |
-
anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
|
276 |
-
na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
|
277 |
-
no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
|
278 |
-
|
279 |
-
layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
|
280 |
-
for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
|
281 |
-
m_str = m
|
282 |
-
m = eval(m) if isinstance(m, str) else m # eval strings
|
283 |
-
for j, a in enumerate(args):
|
284 |
-
try:
|
285 |
-
args[j] = eval(a) if isinstance(a, str) else a # eval strings
|
286 |
-
except NameError:
|
287 |
-
pass
|
288 |
-
|
289 |
-
n = max(round(n * gd), 1) if n > 1 else n # depth gain
|
290 |
-
if m in [nn.Conv2d, Conv, Bottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3]:
|
291 |
-
c1, c2 = ch[f], args[0]
|
292 |
-
c2 = make_divisible(c2 * gw, 8) if c2 != no else c2
|
293 |
-
|
294 |
-
args = [c1, c2, *args[1:]]
|
295 |
-
if m in [BottleneckCSP, C3]:
|
296 |
-
args.insert(2, n)
|
297 |
-
n = 1
|
298 |
-
elif m is nn.BatchNorm2d:
|
299 |
-
args = [ch[f]]
|
300 |
-
elif m is Concat:
|
301 |
-
c2 = sum(ch[-1 if x == -1 else x + 1] for x in f)
|
302 |
-
elif m is Detect:
|
303 |
-
args.append([ch[x + 1] for x in f])
|
304 |
-
if isinstance(args[1], int): # number of anchors
|
305 |
-
args[1] = [list(range(args[1] * 2))] * len(f)
|
306 |
-
args.append(imgsz)
|
307 |
-
else:
|
308 |
-
c2 = ch[f]
|
309 |
-
|
310 |
-
tf_m = eval('TF' + m_str.replace('nn.', ''))
|
311 |
-
m_ = keras.Sequential([tf_m(*args, w=model.model[i][j]) for j in range(n)]) if n > 1 \
|
312 |
-
else tf_m(*args, w=model.model[i]) # module
|
313 |
-
|
314 |
-
torch_m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
|
315 |
-
t = str(m)[8:-2].replace('__main__.', '') # module type
|
316 |
-
np = sum(x.numel() for x in torch_m_.parameters()) # number params
|
317 |
-
m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
|
318 |
-
LOGGER.info(f'{i:>3}{str(f):>18}{str(n):>3}{np:>10} {t:<40}{str(args):<30}') # print
|
319 |
-
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
|
320 |
-
layers.append(m_)
|
321 |
-
ch.append(c2)
|
322 |
-
return keras.Sequential(layers), sorted(save)
|
323 |
-
|
324 |
-
|
325 |
-
class TFModel:
|
326 |
-
def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, model=None, imgsz=(640, 640)): # model, channels, classes
|
327 |
-
super().__init__()
|
328 |
-
if isinstance(cfg, dict):
|
329 |
-
self.yaml = cfg # model dict
|
330 |
-
else: # is *.yaml
|
331 |
-
import yaml # for torch hub
|
332 |
-
self.yaml_file = Path(cfg).name
|
333 |
-
with open(cfg) as f:
|
334 |
-
self.yaml = yaml.load(f, Loader=yaml.FullLoader) # model dict
|
335 |
-
|
336 |
-
# Define model
|
337 |
-
if nc and nc != self.yaml['nc']:
|
338 |
-
LOGGER.info(f"Overriding {cfg} nc={self.yaml['nc']} with nc={nc}")
|
339 |
-
self.yaml['nc'] = nc # override yaml value
|
340 |
-
self.model, self.savelist = parse_model(deepcopy(self.yaml), ch=[ch], model=model, imgsz=imgsz)
|
341 |
-
|
342 |
-
def predict(self, inputs, tf_nms=False, agnostic_nms=False, topk_per_class=100, topk_all=100, iou_thres=0.45,
|
343 |
-
conf_thres=0.25):
|
344 |
-
y = [] # outputs
|
345 |
-
x = inputs
|
346 |
-
for i, m in enumerate(self.model.layers):
|
347 |
-
if m.f != -1: # if not from previous layer
|
348 |
-
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
|
349 |
-
|
350 |
-
x = m(x) # run
|
351 |
-
y.append(x if m.i in self.savelist else None) # save output
|
352 |
-
|
353 |
-
# Add TensorFlow NMS
|
354 |
-
if tf_nms:
|
355 |
-
boxes = self._xywh2xyxy(x[0][..., :4])
|
356 |
-
probs = x[0][:, :, 4:5]
|
357 |
-
classes = x[0][:, :, 5:]
|
358 |
-
scores = probs * classes
|
359 |
-
if agnostic_nms:
|
360 |
-
nms = AgnosticNMS()((boxes, classes, scores), topk_all, iou_thres, conf_thres)
|
361 |
-
return nms, x[1]
|
362 |
-
else:
|
363 |
-
boxes = tf.expand_dims(boxes, 2)
|
364 |
-
nms = tf.image.combined_non_max_suppression(
|
365 |
-
boxes, scores, topk_per_class, topk_all, iou_thres, conf_thres, clip_boxes=False)
|
366 |
-
return nms, x[1]
|
367 |
-
|
368 |
-
return x[0] # output only first tensor [1,6300,85] = [xywh, conf, class0, class1, ...]
|
369 |
-
# x = x[0][0] # [x(1,6300,85), ...] to x(6300,85)
|
370 |
-
# xywh = x[..., :4] # x(6300,4) boxes
|
371 |
-
# conf = x[..., 4:5] # x(6300,1) confidences
|
372 |
-
# cls = tf.reshape(tf.cast(tf.argmax(x[..., 5:], axis=1), tf.float32), (-1, 1)) # x(6300,1) classes
|
373 |
-
# return tf.concat([conf, cls, xywh], 1)
|
374 |
-
|
375 |
-
@staticmethod
|
376 |
-
def _xywh2xyxy(xywh):
|
377 |
-
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
|
378 |
-
x, y, w, h = tf.split(xywh, num_or_size_splits=4, axis=-1)
|
379 |
-
return tf.concat([x - w / 2, y - h / 2, x + w / 2, y + h / 2], axis=-1)
|
380 |
-
|
381 |
-
|
382 |
-
class AgnosticNMS(keras.layers.Layer):
|
383 |
-
# TF Agnostic NMS
|
384 |
-
def call(self, input, topk_all, iou_thres, conf_thres):
|
385 |
-
# wrap map_fn to avoid TypeSpec related error https://stackoverflow.com/a/65809989/3036450
|
386 |
-
return tf.map_fn(lambda x: self._nms(x, topk_all, iou_thres, conf_thres), input,
|
387 |
-
fn_output_signature=(tf.float32, tf.float32, tf.float32, tf.int32),
|
388 |
-
name='agnostic_nms')
|
389 |
-
|
390 |
-
@staticmethod
|
391 |
-
def _nms(x, topk_all=100, iou_thres=0.45, conf_thres=0.25): # agnostic NMS
|
392 |
-
boxes, classes, scores = x
|
393 |
-
class_inds = tf.cast(tf.argmax(classes, axis=-1), tf.float32)
|
394 |
-
scores_inp = tf.reduce_max(scores, -1)
|
395 |
-
selected_inds = tf.image.non_max_suppression(
|
396 |
-
boxes, scores_inp, max_output_size=topk_all, iou_threshold=iou_thres, score_threshold=conf_thres)
|
397 |
-
selected_boxes = tf.gather(boxes, selected_inds)
|
398 |
-
padded_boxes = tf.pad(selected_boxes,
|
399 |
-
paddings=[[0, topk_all - tf.shape(selected_boxes)[0]], [0, 0]],
|
400 |
-
mode="CONSTANT", constant_values=0.0)
|
401 |
-
selected_scores = tf.gather(scores_inp, selected_inds)
|
402 |
-
padded_scores = tf.pad(selected_scores,
|
403 |
-
paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]],
|
404 |
-
mode="CONSTANT", constant_values=-1.0)
|
405 |
-
selected_classes = tf.gather(class_inds, selected_inds)
|
406 |
-
padded_classes = tf.pad(selected_classes,
|
407 |
-
paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]],
|
408 |
-
mode="CONSTANT", constant_values=-1.0)
|
409 |
-
valid_detections = tf.shape(selected_inds)[0]
|
410 |
-
return padded_boxes, padded_scores, padded_classes, valid_detections
|
411 |
-
|
412 |
-
|
413 |
-
def representative_dataset_gen(dataset, ncalib=100):
|
414 |
-
# Representative dataset generator for use with converter.representative_dataset, returns a generator of np arrays
|
415 |
-
for n, (path, img, im0s, vid_cap, string) in enumerate(dataset):
|
416 |
-
input = np.transpose(img, [1, 2, 0])
|
417 |
-
input = np.expand_dims(input, axis=0).astype(np.float32)
|
418 |
-
input /= 255
|
419 |
-
yield [input]
|
420 |
-
if n >= ncalib:
|
421 |
-
break
|
422 |
-
|
423 |
-
|
424 |
-
def run(weights=ROOT / 'yolov5s.pt', # weights path
|
425 |
-
imgsz=(640, 640), # inference size h,w
|
426 |
-
batch_size=1, # batch size
|
427 |
-
dynamic=False, # dynamic batch size
|
428 |
-
):
|
429 |
-
# PyTorch model
|
430 |
-
im = torch.zeros((batch_size, 3, *imgsz)) # BCHW image
|
431 |
-
model = attempt_load(weights, map_location=torch.device('cpu'), inplace=True, fuse=False)
|
432 |
-
_ = model(im) # inference
|
433 |
-
model.info()
|
434 |
-
|
435 |
-
# TensorFlow model
|
436 |
-
im = tf.zeros((batch_size, *imgsz, 3)) # BHWC image
|
437 |
-
tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
|
438 |
-
_ = tf_model.predict(im) # inference
|
439 |
-
|
440 |
-
# Keras model
|
441 |
-
im = keras.Input(shape=(*imgsz, 3), batch_size=None if dynamic else batch_size)
|
442 |
-
keras_model = keras.Model(inputs=im, outputs=tf_model.predict(im))
|
443 |
-
keras_model.summary()
|
444 |
-
|
445 |
-
LOGGER.info('PyTorch, TensorFlow and Keras models successfully verified.\nUse export.py for TF model export.')
|
446 |
-
|
447 |
-
|
448 |
-
def parse_opt():
|
449 |
-
parser = argparse.ArgumentParser()
|
450 |
-
parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='weights path')
|
451 |
-
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
|
452 |
-
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
|
453 |
-
parser.add_argument('--dynamic', action='store_true', help='dynamic batch size')
|
454 |
-
opt = parser.parse_args()
|
455 |
-
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
|
456 |
-
print_args(FILE.stem, opt)
|
457 |
-
return opt
|
458 |
-
|
459 |
-
|
460 |
-
def main(opt):
|
461 |
-
run(**vars(opt))
|
462 |
-
|
463 |
-
|
464 |
-
if __name__ == "__main__":
|
465 |
-
opt = parse_opt()
|
466 |
-
main(opt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/models/yolo.py
DELETED
@@ -1,329 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
"""
|
3 |
-
YOLO-specific modules
|
4 |
-
|
5 |
-
Usage:
|
6 |
-
$ python path/to/models/yolo.py --cfg yolov5s.yaml
|
7 |
-
"""
|
8 |
-
|
9 |
-
import argparse
|
10 |
-
import sys
|
11 |
-
from copy import deepcopy
|
12 |
-
from pathlib import Path
|
13 |
-
|
14 |
-
FILE = Path(__file__).resolve()
|
15 |
-
ROOT = FILE.parents[1] # YOLOv5 root directory
|
16 |
-
if str(ROOT) not in sys.path:
|
17 |
-
sys.path.append(str(ROOT)) # add ROOT to PATH
|
18 |
-
# ROOT = ROOT.relative_to(Path.cwd()) # relative
|
19 |
-
|
20 |
-
from models.common import *
|
21 |
-
from models.experimental import *
|
22 |
-
from utils.autoanchor import check_anchor_order
|
23 |
-
from utils.general import LOGGER, check_version, check_yaml, make_divisible, print_args
|
24 |
-
from utils.plots import feature_visualization
|
25 |
-
from utils.torch_utils import fuse_conv_and_bn, initialize_weights, model_info, scale_img, select_device, time_sync
|
26 |
-
|
27 |
-
try:
|
28 |
-
import thop # for FLOPs computation
|
29 |
-
except ImportError:
|
30 |
-
thop = None
|
31 |
-
|
32 |
-
|
33 |
-
class Detect(nn.Module):
|
34 |
-
stride = None # strides computed during build
|
35 |
-
onnx_dynamic = False # ONNX export parameter
|
36 |
-
|
37 |
-
def __init__(self, nc=80, anchors=(), ch=(), inplace=True): # detection layer
|
38 |
-
super().__init__()
|
39 |
-
self.nc = nc # number of classes
|
40 |
-
self.no = nc + 5 # number of outputs per anchor
|
41 |
-
self.nl = len(anchors) # number of detection layers
|
42 |
-
self.na = len(anchors[0]) // 2 # number of anchors
|
43 |
-
self.grid = [torch.zeros(1)] * self.nl # init grid
|
44 |
-
self.anchor_grid = [torch.zeros(1)] * self.nl # init anchor grid
|
45 |
-
self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2)) # shape(nl,na,2)
|
46 |
-
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
|
47 |
-
self.inplace = inplace # use in-place ops (e.g. slice assignment)
|
48 |
-
|
49 |
-
def forward(self, x):
|
50 |
-
z = [] # inference output
|
51 |
-
for i in range(self.nl):
|
52 |
-
x[i] = self.m[i](x[i]) # conv
|
53 |
-
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
|
54 |
-
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
|
55 |
-
|
56 |
-
if not self.training: # inference
|
57 |
-
if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
|
58 |
-
self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
|
59 |
-
|
60 |
-
y = x[i].sigmoid()
|
61 |
-
if self.inplace:
|
62 |
-
y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i] # xy
|
63 |
-
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
|
64 |
-
else: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
|
65 |
-
xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i] # xy
|
66 |
-
wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
|
67 |
-
y = torch.cat((xy, wh, y[..., 4:]), -1)
|
68 |
-
z.append(y.view(bs, -1, self.no))
|
69 |
-
|
70 |
-
return x if self.training else (torch.cat(z, 1), x)
|
71 |
-
|
72 |
-
def _make_grid(self, nx=20, ny=20, i=0):
|
73 |
-
d = self.anchors[i].device
|
74 |
-
shape = 1, self.na, ny, nx, 2 # grid shape
|
75 |
-
if check_version(torch.__version__, '1.10.0'): # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
|
76 |
-
yv, xv = torch.meshgrid(torch.arange(ny, device=d), torch.arange(nx, device=d), indexing='ij')
|
77 |
-
else:
|
78 |
-
yv, xv = torch.meshgrid(torch.arange(ny, device=d), torch.arange(nx, device=d))
|
79 |
-
grid = torch.stack((xv, yv), 2).expand(shape).float()
|
80 |
-
anchor_grid = (self.anchors[i] * self.stride[i]).view((1, self.na, 1, 1, 2)).expand(shape).float()
|
81 |
-
return grid, anchor_grid
|
82 |
-
|
83 |
-
|
84 |
-
class Model(nn.Module):
|
85 |
-
def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None): # model, input channels, number of classes
|
86 |
-
super().__init__()
|
87 |
-
if isinstance(cfg, dict):
|
88 |
-
self.yaml = cfg # model dict
|
89 |
-
else: # is *.yaml
|
90 |
-
import yaml # for torch hub
|
91 |
-
self.yaml_file = Path(cfg).name
|
92 |
-
with open(cfg, encoding='ascii', errors='ignore') as f:
|
93 |
-
self.yaml = yaml.safe_load(f) # model dict
|
94 |
-
|
95 |
-
# Define model
|
96 |
-
ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels
|
97 |
-
if nc and nc != self.yaml['nc']:
|
98 |
-
LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
|
99 |
-
self.yaml['nc'] = nc # override yaml value
|
100 |
-
if anchors:
|
101 |
-
LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}')
|
102 |
-
self.yaml['anchors'] = round(anchors) # override yaml value
|
103 |
-
self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist
|
104 |
-
self.names = [str(i) for i in range(self.yaml['nc'])] # default names
|
105 |
-
self.inplace = self.yaml.get('inplace', True)
|
106 |
-
|
107 |
-
# Build strides, anchors
|
108 |
-
m = self.model[-1] # Detect()
|
109 |
-
if isinstance(m, Detect):
|
110 |
-
s = 256 # 2x min stride
|
111 |
-
m.inplace = self.inplace
|
112 |
-
m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
|
113 |
-
check_anchor_order(m) # must be in pixel-space (not grid-space)
|
114 |
-
m.anchors /= m.stride.view(-1, 1, 1)
|
115 |
-
self.stride = m.stride
|
116 |
-
self._initialize_biases() # only run once
|
117 |
-
|
118 |
-
# Init weights, biases
|
119 |
-
initialize_weights(self)
|
120 |
-
self.info()
|
121 |
-
LOGGER.info('')
|
122 |
-
|
123 |
-
def forward(self, x, augment=False, profile=False, visualize=False):
|
124 |
-
if augment:
|
125 |
-
return self._forward_augment(x) # augmented inference, None
|
126 |
-
return self._forward_once(x, profile, visualize) # single-scale inference, train
|
127 |
-
|
128 |
-
def _forward_augment(self, x):
|
129 |
-
img_size = x.shape[-2:] # height, width
|
130 |
-
s = [1, 0.83, 0.67] # scales
|
131 |
-
f = [None, 3, None] # flips (2-ud, 3-lr)
|
132 |
-
y = [] # outputs
|
133 |
-
for si, fi in zip(s, f):
|
134 |
-
xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
|
135 |
-
yi = self._forward_once(xi)[0] # forward
|
136 |
-
# cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save
|
137 |
-
yi = self._descale_pred(yi, fi, si, img_size)
|
138 |
-
y.append(yi)
|
139 |
-
y = self._clip_augmented(y) # clip augmented tails
|
140 |
-
return torch.cat(y, 1), None # augmented inference, train
|
141 |
-
|
142 |
-
def _forward_once(self, x, profile=False, visualize=False):
|
143 |
-
y, dt = [], [] # outputs
|
144 |
-
for m in self.model:
|
145 |
-
if m.f != -1: # if not from previous layer
|
146 |
-
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
|
147 |
-
if profile:
|
148 |
-
self._profile_one_layer(m, x, dt)
|
149 |
-
x = m(x) # run
|
150 |
-
y.append(x if m.i in self.save else None) # save output
|
151 |
-
if visualize:
|
152 |
-
feature_visualization(x, m.type, m.i, save_dir=visualize)
|
153 |
-
return x
|
154 |
-
|
155 |
-
def _descale_pred(self, p, flips, scale, img_size):
|
156 |
-
# de-scale predictions following augmented inference (inverse operation)
|
157 |
-
if self.inplace:
|
158 |
-
p[..., :4] /= scale # de-scale
|
159 |
-
if flips == 2:
|
160 |
-
p[..., 1] = img_size[0] - p[..., 1] # de-flip ud
|
161 |
-
elif flips == 3:
|
162 |
-
p[..., 0] = img_size[1] - p[..., 0] # de-flip lr
|
163 |
-
else:
|
164 |
-
x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale # de-scale
|
165 |
-
if flips == 2:
|
166 |
-
y = img_size[0] - y # de-flip ud
|
167 |
-
elif flips == 3:
|
168 |
-
x = img_size[1] - x # de-flip lr
|
169 |
-
p = torch.cat((x, y, wh, p[..., 4:]), -1)
|
170 |
-
return p
|
171 |
-
|
172 |
-
def _clip_augmented(self, y):
|
173 |
-
# Clip YOLOv5 augmented inference tails
|
174 |
-
nl = self.model[-1].nl # number of detection layers (P3-P5)
|
175 |
-
g = sum(4 ** x for x in range(nl)) # grid points
|
176 |
-
e = 1 # exclude layer count
|
177 |
-
i = (y[0].shape[1] // g) * sum(4 ** x for x in range(e)) # indices
|
178 |
-
y[0] = y[0][:, :-i] # large
|
179 |
-
i = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e)) # indices
|
180 |
-
y[-1] = y[-1][:, i:] # small
|
181 |
-
return y
|
182 |
-
|
183 |
-
def _profile_one_layer(self, m, x, dt):
|
184 |
-
c = isinstance(m, Detect) # is final layer, copy input as inplace fix
|
185 |
-
o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPs
|
186 |
-
t = time_sync()
|
187 |
-
for _ in range(10):
|
188 |
-
m(x.copy() if c else x)
|
189 |
-
dt.append((time_sync() - t) * 100)
|
190 |
-
if m == self.model[0]:
|
191 |
-
LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} {'module'}")
|
192 |
-
LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f} {m.type}')
|
193 |
-
if c:
|
194 |
-
LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s} Total")
|
195 |
-
|
196 |
-
def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
|
197 |
-
# https://arxiv.org/abs/1708.02002 section 3.3
|
198 |
-
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
|
199 |
-
m = self.model[-1] # Detect() module
|
200 |
-
for mi, s in zip(m.m, m.stride): # from
|
201 |
-
b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
|
202 |
-
b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
|
203 |
-
b.data[:, 5:] += math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # cls
|
204 |
-
mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
|
205 |
-
|
206 |
-
def _print_biases(self):
|
207 |
-
m = self.model[-1] # Detect() module
|
208 |
-
for mi in m.m: # from
|
209 |
-
b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85)
|
210 |
-
LOGGER.info(
|
211 |
-
('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))
|
212 |
-
|
213 |
-
# def _print_weights(self):
|
214 |
-
# for m in self.model.modules():
|
215 |
-
# if type(m) is Bottleneck:
|
216 |
-
# LOGGER.info('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights
|
217 |
-
|
218 |
-
def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
|
219 |
-
LOGGER.info('Fusing layers... ')
|
220 |
-
for m in self.model.modules():
|
221 |
-
if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):
|
222 |
-
m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
|
223 |
-
delattr(m, 'bn') # remove batchnorm
|
224 |
-
m.forward = m.forward_fuse # update forward
|
225 |
-
self.info()
|
226 |
-
return self
|
227 |
-
|
228 |
-
def info(self, verbose=False, img_size=640): # print model information
|
229 |
-
model_info(self, verbose, img_size)
|
230 |
-
|
231 |
-
def _apply(self, fn):
|
232 |
-
# Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
|
233 |
-
self = super()._apply(fn)
|
234 |
-
m = self.model[-1] # Detect()
|
235 |
-
if isinstance(m, Detect):
|
236 |
-
m.stride = fn(m.stride)
|
237 |
-
m.grid = list(map(fn, m.grid))
|
238 |
-
if isinstance(m.anchor_grid, list):
|
239 |
-
m.anchor_grid = list(map(fn, m.anchor_grid))
|
240 |
-
return self
|
241 |
-
|
242 |
-
|
243 |
-
def parse_model(d, ch): # model_dict, input_channels(3)
|
244 |
-
LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}")
|
245 |
-
anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
|
246 |
-
na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
|
247 |
-
no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
|
248 |
-
|
249 |
-
layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
|
250 |
-
for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
|
251 |
-
m = eval(m) if isinstance(m, str) else m # eval strings
|
252 |
-
for j, a in enumerate(args):
|
253 |
-
try:
|
254 |
-
args[j] = eval(a) if isinstance(a, str) else a # eval strings
|
255 |
-
except NameError:
|
256 |
-
pass
|
257 |
-
|
258 |
-
n = n_ = max(round(n * gd), 1) if n > 1 else n # depth gain
|
259 |
-
if m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
|
260 |
-
BottleneckCSP, C3, C3TR, C3SPP, C3Ghost]:
|
261 |
-
c1, c2 = ch[f], args[0]
|
262 |
-
if c2 != no: # if not output
|
263 |
-
c2 = make_divisible(c2 * gw, 8)
|
264 |
-
|
265 |
-
args = [c1, c2, *args[1:]]
|
266 |
-
if m in [BottleneckCSP, C3, C3TR, C3Ghost]:
|
267 |
-
args.insert(2, n) # number of repeats
|
268 |
-
n = 1
|
269 |
-
elif m is nn.BatchNorm2d:
|
270 |
-
args = [ch[f]]
|
271 |
-
elif m is Concat:
|
272 |
-
c2 = sum(ch[x] for x in f)
|
273 |
-
elif m is Detect:
|
274 |
-
args.append([ch[x] for x in f])
|
275 |
-
if isinstance(args[1], int): # number of anchors
|
276 |
-
args[1] = [list(range(args[1] * 2))] * len(f)
|
277 |
-
elif m is Contract:
|
278 |
-
c2 = ch[f] * args[0] ** 2
|
279 |
-
elif m is Expand:
|
280 |
-
c2 = ch[f] // args[0] ** 2
|
281 |
-
else:
|
282 |
-
c2 = ch[f]
|
283 |
-
|
284 |
-
m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
|
285 |
-
t = str(m)[8:-2].replace('__main__.', '') # module type
|
286 |
-
np = sum(x.numel() for x in m_.parameters()) # number params
|
287 |
-
m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
|
288 |
-
LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f} {t:<40}{str(args):<30}') # print
|
289 |
-
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
|
290 |
-
layers.append(m_)
|
291 |
-
if i == 0:
|
292 |
-
ch = []
|
293 |
-
ch.append(c2)
|
294 |
-
return nn.Sequential(*layers), sorted(save)
|
295 |
-
|
296 |
-
|
297 |
-
if __name__ == '__main__':
|
298 |
-
parser = argparse.ArgumentParser()
|
299 |
-
parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml')
|
300 |
-
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
301 |
-
parser.add_argument('--profile', action='store_true', help='profile model speed')
|
302 |
-
parser.add_argument('--test', action='store_true', help='test all yolo*.yaml')
|
303 |
-
opt = parser.parse_args()
|
304 |
-
opt.cfg = check_yaml(opt.cfg) # check YAML
|
305 |
-
print_args(FILE.stem, opt)
|
306 |
-
device = select_device(opt.device)
|
307 |
-
|
308 |
-
# Create model
|
309 |
-
model = Model(opt.cfg).to(device)
|
310 |
-
model.train()
|
311 |
-
|
312 |
-
# Profile
|
313 |
-
if opt.profile:
|
314 |
-
img = torch.rand(8 if torch.cuda.is_available() else 1, 3, 640, 640).to(device)
|
315 |
-
y = model(img, profile=True)
|
316 |
-
|
317 |
-
# Test all models
|
318 |
-
if opt.test:
|
319 |
-
for cfg in Path(ROOT / 'models').rglob('yolo*.yaml'):
|
320 |
-
try:
|
321 |
-
_ = Model(cfg)
|
322 |
-
except Exception as e:
|
323 |
-
print(f'Error in {cfg}: {e}')
|
324 |
-
|
325 |
-
# Tensorboard (not working https://github.com/ultralytics/yolov5/issues/2898)
|
326 |
-
# from torch.utils.tensorboard import SummaryWriter
|
327 |
-
# tb_writer = SummaryWriter('.')
|
328 |
-
# LOGGER.info("Run 'tensorboard --logdir=models' to view tensorboard at http://localhost:6006/")
|
329 |
-
# tb_writer.add_graph(torch.jit.trace(model, img, strict=False), []) # add model graph
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/models/yolov5l.yaml
DELETED
@@ -1,48 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
|
3 |
-
# Parameters
|
4 |
-
nc: 80 # number of classes
|
5 |
-
depth_multiple: 1.0 # model depth multiple
|
6 |
-
width_multiple: 1.0 # layer channel multiple
|
7 |
-
anchors:
|
8 |
-
- [10,13, 16,30, 33,23] # P3/8
|
9 |
-
- [30,61, 62,45, 59,119] # P4/16
|
10 |
-
- [116,90, 156,198, 373,326] # P5/32
|
11 |
-
|
12 |
-
# YOLOv5 v6.0 backbone
|
13 |
-
backbone:
|
14 |
-
# [from, number, module, args]
|
15 |
-
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
16 |
-
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
17 |
-
[-1, 3, C3, [128]],
|
18 |
-
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
19 |
-
[-1, 6, C3, [256]],
|
20 |
-
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
21 |
-
[-1, 9, C3, [512]],
|
22 |
-
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
23 |
-
[-1, 3, C3, [1024]],
|
24 |
-
[-1, 1, SPPF, [1024, 5]], # 9
|
25 |
-
]
|
26 |
-
|
27 |
-
# YOLOv5 v6.0 head
|
28 |
-
head:
|
29 |
-
[[-1, 1, Conv, [512, 1, 1]],
|
30 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
31 |
-
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
32 |
-
[-1, 3, C3, [512, False]], # 13
|
33 |
-
|
34 |
-
[-1, 1, Conv, [256, 1, 1]],
|
35 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
36 |
-
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
37 |
-
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
38 |
-
|
39 |
-
[-1, 1, Conv, [256, 3, 2]],
|
40 |
-
[[-1, 14], 1, Concat, [1]], # cat head P4
|
41 |
-
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
42 |
-
|
43 |
-
[-1, 1, Conv, [512, 3, 2]],
|
44 |
-
[[-1, 10], 1, Concat, [1]], # cat head P5
|
45 |
-
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
46 |
-
|
47 |
-
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
48 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/models/yolov5m.yaml
DELETED
@@ -1,48 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
|
3 |
-
# Parameters
|
4 |
-
nc: 80 # number of classes
|
5 |
-
depth_multiple: 0.67 # model depth multiple
|
6 |
-
width_multiple: 0.75 # layer channel multiple
|
7 |
-
anchors:
|
8 |
-
- [10,13, 16,30, 33,23] # P3/8
|
9 |
-
- [30,61, 62,45, 59,119] # P4/16
|
10 |
-
- [116,90, 156,198, 373,326] # P5/32
|
11 |
-
|
12 |
-
# YOLOv5 v6.0 backbone
|
13 |
-
backbone:
|
14 |
-
# [from, number, module, args]
|
15 |
-
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
16 |
-
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
17 |
-
[-1, 3, C3, [128]],
|
18 |
-
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
19 |
-
[-1, 6, C3, [256]],
|
20 |
-
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
21 |
-
[-1, 9, C3, [512]],
|
22 |
-
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
23 |
-
[-1, 3, C3, [1024]],
|
24 |
-
[-1, 1, SPPF, [1024, 5]], # 9
|
25 |
-
]
|
26 |
-
|
27 |
-
# YOLOv5 v6.0 head
|
28 |
-
head:
|
29 |
-
[[-1, 1, Conv, [512, 1, 1]],
|
30 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
31 |
-
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
32 |
-
[-1, 3, C3, [512, False]], # 13
|
33 |
-
|
34 |
-
[-1, 1, Conv, [256, 1, 1]],
|
35 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
36 |
-
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
37 |
-
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
38 |
-
|
39 |
-
[-1, 1, Conv, [256, 3, 2]],
|
40 |
-
[[-1, 14], 1, Concat, [1]], # cat head P4
|
41 |
-
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
42 |
-
|
43 |
-
[-1, 1, Conv, [512, 3, 2]],
|
44 |
-
[[-1, 10], 1, Concat, [1]], # cat head P5
|
45 |
-
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
46 |
-
|
47 |
-
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
48 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/models/yolov5n.yaml
DELETED
@@ -1,48 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
|
3 |
-
# Parameters
|
4 |
-
nc: 80 # number of classes
|
5 |
-
depth_multiple: 0.33 # model depth multiple
|
6 |
-
width_multiple: 0.25 # layer channel multiple
|
7 |
-
anchors:
|
8 |
-
- [10,13, 16,30, 33,23] # P3/8
|
9 |
-
- [30,61, 62,45, 59,119] # P4/16
|
10 |
-
- [116,90, 156,198, 373,326] # P5/32
|
11 |
-
|
12 |
-
# YOLOv5 v6.0 backbone
|
13 |
-
backbone:
|
14 |
-
# [from, number, module, args]
|
15 |
-
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
16 |
-
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
17 |
-
[-1, 3, C3, [128]],
|
18 |
-
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
19 |
-
[-1, 6, C3, [256]],
|
20 |
-
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
21 |
-
[-1, 9, C3, [512]],
|
22 |
-
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
23 |
-
[-1, 3, C3, [1024]],
|
24 |
-
[-1, 1, SPPF, [1024, 5]], # 9
|
25 |
-
]
|
26 |
-
|
27 |
-
# YOLOv5 v6.0 head
|
28 |
-
head:
|
29 |
-
[[-1, 1, Conv, [512, 1, 1]],
|
30 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
31 |
-
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
32 |
-
[-1, 3, C3, [512, False]], # 13
|
33 |
-
|
34 |
-
[-1, 1, Conv, [256, 1, 1]],
|
35 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
36 |
-
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
37 |
-
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
38 |
-
|
39 |
-
[-1, 1, Conv, [256, 3, 2]],
|
40 |
-
[[-1, 14], 1, Concat, [1]], # cat head P4
|
41 |
-
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
42 |
-
|
43 |
-
[-1, 1, Conv, [512, 3, 2]],
|
44 |
-
[[-1, 10], 1, Concat, [1]], # cat head P5
|
45 |
-
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
46 |
-
|
47 |
-
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
48 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/models/yolov5s.yaml
DELETED
@@ -1,48 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
|
3 |
-
# Parameters
|
4 |
-
nc: 80 # number of classes
|
5 |
-
depth_multiple: 0.33 # model depth multiple
|
6 |
-
width_multiple: 0.50 # layer channel multiple
|
7 |
-
anchors:
|
8 |
-
- [10,13, 16,30, 33,23] # P3/8
|
9 |
-
- [30,61, 62,45, 59,119] # P4/16
|
10 |
-
- [116,90, 156,198, 373,326] # P5/32
|
11 |
-
|
12 |
-
# YOLOv5 v6.0 backbone
|
13 |
-
backbone:
|
14 |
-
# [from, number, module, args]
|
15 |
-
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
16 |
-
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
17 |
-
[-1, 3, C3, [128]],
|
18 |
-
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
19 |
-
[-1, 6, C3, [256]],
|
20 |
-
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
21 |
-
[-1, 9, C3, [512]],
|
22 |
-
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
23 |
-
[-1, 3, C3, [1024]],
|
24 |
-
[-1, 1, SPPF, [1024, 5]], # 9
|
25 |
-
]
|
26 |
-
|
27 |
-
# YOLOv5 v6.0 head
|
28 |
-
head:
|
29 |
-
[[-1, 1, Conv, [512, 1, 1]],
|
30 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
31 |
-
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
32 |
-
[-1, 3, C3, [512, False]], # 13
|
33 |
-
|
34 |
-
[-1, 1, Conv, [256, 1, 1]],
|
35 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
36 |
-
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
37 |
-
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
38 |
-
|
39 |
-
[-1, 1, Conv, [256, 3, 2]],
|
40 |
-
[[-1, 14], 1, Concat, [1]], # cat head P4
|
41 |
-
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
42 |
-
|
43 |
-
[-1, 1, Conv, [512, 3, 2]],
|
44 |
-
[[-1, 10], 1, Concat, [1]], # cat head P5
|
45 |
-
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
46 |
-
|
47 |
-
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
48 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/models/yolov5x.yaml
DELETED
@@ -1,48 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
|
3 |
-
# Parameters
|
4 |
-
nc: 80 # number of classes
|
5 |
-
depth_multiple: 1.33 # model depth multiple
|
6 |
-
width_multiple: 1.25 # layer channel multiple
|
7 |
-
anchors:
|
8 |
-
- [10,13, 16,30, 33,23] # P3/8
|
9 |
-
- [30,61, 62,45, 59,119] # P4/16
|
10 |
-
- [116,90, 156,198, 373,326] # P5/32
|
11 |
-
|
12 |
-
# YOLOv5 v6.0 backbone
|
13 |
-
backbone:
|
14 |
-
# [from, number, module, args]
|
15 |
-
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
16 |
-
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
17 |
-
[-1, 3, C3, [128]],
|
18 |
-
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
19 |
-
[-1, 6, C3, [256]],
|
20 |
-
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
21 |
-
[-1, 9, C3, [512]],
|
22 |
-
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
23 |
-
[-1, 3, C3, [1024]],
|
24 |
-
[-1, 1, SPPF, [1024, 5]], # 9
|
25 |
-
]
|
26 |
-
|
27 |
-
# YOLOv5 v6.0 head
|
28 |
-
head:
|
29 |
-
[[-1, 1, Conv, [512, 1, 1]],
|
30 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
31 |
-
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
32 |
-
[-1, 3, C3, [512, False]], # 13
|
33 |
-
|
34 |
-
[-1, 1, Conv, [256, 1, 1]],
|
35 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
36 |
-
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
37 |
-
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
38 |
-
|
39 |
-
[-1, 1, Conv, [256, 3, 2]],
|
40 |
-
[[-1, 14], 1, Concat, [1]], # cat head P4
|
41 |
-
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
42 |
-
|
43 |
-
[-1, 1, Conv, [512, 3, 2]],
|
44 |
-
[[-1, 10], 1, Concat, [1]], # cat head P5
|
45 |
-
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
46 |
-
|
47 |
-
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
48 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/utils/__init__.py
DELETED
@@ -1,36 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
"""
|
3 |
-
utils/initialization
|
4 |
-
"""
|
5 |
-
|
6 |
-
|
7 |
-
def notebook_init(verbose=True):
|
8 |
-
# Check system software and hardware
|
9 |
-
print('Checking setup...')
|
10 |
-
|
11 |
-
import os
|
12 |
-
import shutil
|
13 |
-
|
14 |
-
from utils.general import check_requirements, emojis, is_colab
|
15 |
-
from utils.torch_utils import select_device # imports
|
16 |
-
|
17 |
-
check_requirements(('psutil', 'IPython'))
|
18 |
-
import psutil
|
19 |
-
from IPython import display # to display images and clear console output
|
20 |
-
|
21 |
-
if is_colab():
|
22 |
-
shutil.rmtree('/content/sample_data', ignore_errors=True) # remove colab /sample_data directory
|
23 |
-
|
24 |
-
# System info
|
25 |
-
if verbose:
|
26 |
-
gb = 1 << 30 # bytes to GiB (1024 ** 3)
|
27 |
-
ram = psutil.virtual_memory().total
|
28 |
-
total, used, free = shutil.disk_usage("/")
|
29 |
-
display.clear_output()
|
30 |
-
s = f'({os.cpu_count()} CPUs, {ram / gb:.1f} GB RAM, {(total - free) / gb:.1f}/{total / gb:.1f} GB disk)'
|
31 |
-
else:
|
32 |
-
s = ''
|
33 |
-
|
34 |
-
select_device(newline=False)
|
35 |
-
print(emojis(f'Setup complete ✅ {s}'))
|
36 |
-
return display
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/utils/activations.py
DELETED
@@ -1,101 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
"""
|
3 |
-
Activation functions
|
4 |
-
"""
|
5 |
-
|
6 |
-
import torch
|
7 |
-
import torch.nn as nn
|
8 |
-
import torch.nn.functional as F
|
9 |
-
|
10 |
-
|
11 |
-
# SiLU https://arxiv.org/pdf/1606.08415.pdf ----------------------------------------------------------------------------
|
12 |
-
class SiLU(nn.Module): # export-friendly version of nn.SiLU()
|
13 |
-
@staticmethod
|
14 |
-
def forward(x):
|
15 |
-
return x * torch.sigmoid(x)
|
16 |
-
|
17 |
-
|
18 |
-
class Hardswish(nn.Module): # export-friendly version of nn.Hardswish()
|
19 |
-
@staticmethod
|
20 |
-
def forward(x):
|
21 |
-
# return x * F.hardsigmoid(x) # for TorchScript and CoreML
|
22 |
-
return x * F.hardtanh(x + 3, 0.0, 6.0) / 6.0 # for TorchScript, CoreML and ONNX
|
23 |
-
|
24 |
-
|
25 |
-
# Mish https://github.com/digantamisra98/Mish --------------------------------------------------------------------------
|
26 |
-
class Mish(nn.Module):
|
27 |
-
@staticmethod
|
28 |
-
def forward(x):
|
29 |
-
return x * F.softplus(x).tanh()
|
30 |
-
|
31 |
-
|
32 |
-
class MemoryEfficientMish(nn.Module):
|
33 |
-
class F(torch.autograd.Function):
|
34 |
-
@staticmethod
|
35 |
-
def forward(ctx, x):
|
36 |
-
ctx.save_for_backward(x)
|
37 |
-
return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x)))
|
38 |
-
|
39 |
-
@staticmethod
|
40 |
-
def backward(ctx, grad_output):
|
41 |
-
x = ctx.saved_tensors[0]
|
42 |
-
sx = torch.sigmoid(x)
|
43 |
-
fx = F.softplus(x).tanh()
|
44 |
-
return grad_output * (fx + x * sx * (1 - fx * fx))
|
45 |
-
|
46 |
-
def forward(self, x):
|
47 |
-
return self.F.apply(x)
|
48 |
-
|
49 |
-
|
50 |
-
# FReLU https://arxiv.org/abs/2007.11824 -------------------------------------------------------------------------------
|
51 |
-
class FReLU(nn.Module):
|
52 |
-
def __init__(self, c1, k=3): # ch_in, kernel
|
53 |
-
super().__init__()
|
54 |
-
self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1, bias=False)
|
55 |
-
self.bn = nn.BatchNorm2d(c1)
|
56 |
-
|
57 |
-
def forward(self, x):
|
58 |
-
return torch.max(x, self.bn(self.conv(x)))
|
59 |
-
|
60 |
-
|
61 |
-
# ACON https://arxiv.org/pdf/2009.04759.pdf ----------------------------------------------------------------------------
|
62 |
-
class AconC(nn.Module):
|
63 |
-
r""" ACON activation (activate or not).
|
64 |
-
AconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is a learnable parameter
|
65 |
-
according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>.
|
66 |
-
"""
|
67 |
-
|
68 |
-
def __init__(self, c1):
|
69 |
-
super().__init__()
|
70 |
-
self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
|
71 |
-
self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
|
72 |
-
self.beta = nn.Parameter(torch.ones(1, c1, 1, 1))
|
73 |
-
|
74 |
-
def forward(self, x):
|
75 |
-
dpx = (self.p1 - self.p2) * x
|
76 |
-
return dpx * torch.sigmoid(self.beta * dpx) + self.p2 * x
|
77 |
-
|
78 |
-
|
79 |
-
class MetaAconC(nn.Module):
|
80 |
-
r""" ACON activation (activate or not).
|
81 |
-
MetaAconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is generated by a small network
|
82 |
-
according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>.
|
83 |
-
"""
|
84 |
-
|
85 |
-
def __init__(self, c1, k=1, s=1, r=16): # ch_in, kernel, stride, r
|
86 |
-
super().__init__()
|
87 |
-
c2 = max(r, c1 // r)
|
88 |
-
self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
|
89 |
-
self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
|
90 |
-
self.fc1 = nn.Conv2d(c1, c2, k, s, bias=True)
|
91 |
-
self.fc2 = nn.Conv2d(c2, c1, k, s, bias=True)
|
92 |
-
# self.bn1 = nn.BatchNorm2d(c2)
|
93 |
-
# self.bn2 = nn.BatchNorm2d(c1)
|
94 |
-
|
95 |
-
def forward(self, x):
|
96 |
-
y = x.mean(dim=2, keepdims=True).mean(dim=3, keepdims=True)
|
97 |
-
# batch-size 1 bug/instabilities https://github.com/ultralytics/yolov5/issues/2891
|
98 |
-
# beta = torch.sigmoid(self.bn2(self.fc2(self.bn1(self.fc1(y))))) # bug/unstable
|
99 |
-
beta = torch.sigmoid(self.fc2(self.fc1(y))) # bug patch BN layers removed
|
100 |
-
dpx = (self.p1 - self.p2) * x
|
101 |
-
return dpx * torch.sigmoid(beta * dpx) + self.p2 * x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/utils/augmentations.py
DELETED
@@ -1,277 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
"""
|
3 |
-
Image augmentation functions
|
4 |
-
"""
|
5 |
-
|
6 |
-
import math
|
7 |
-
import random
|
8 |
-
|
9 |
-
import cv2
|
10 |
-
import numpy as np
|
11 |
-
|
12 |
-
from utils.general import LOGGER, check_version, colorstr, resample_segments, segment2box
|
13 |
-
from utils.metrics import bbox_ioa
|
14 |
-
|
15 |
-
|
16 |
-
class Albumentations:
|
17 |
-
# YOLOv5 Albumentations class (optional, only used if package is installed)
|
18 |
-
def __init__(self):
|
19 |
-
self.transform = None
|
20 |
-
try:
|
21 |
-
import albumentations as A
|
22 |
-
check_version(A.__version__, '1.0.3', hard=True) # version requirement
|
23 |
-
|
24 |
-
self.transform = A.Compose([
|
25 |
-
A.Blur(p=0.01),
|
26 |
-
A.MedianBlur(p=0.01),
|
27 |
-
A.ToGray(p=0.01),
|
28 |
-
A.CLAHE(p=0.01),
|
29 |
-
A.RandomBrightnessContrast(p=0.0),
|
30 |
-
A.RandomGamma(p=0.0),
|
31 |
-
A.ImageCompression(quality_lower=75, p=0.0)],
|
32 |
-
bbox_params=A.BboxParams(format='yolo', label_fields=['class_labels']))
|
33 |
-
|
34 |
-
LOGGER.info(colorstr('albumentations: ') + ', '.join(f'{x}' for x in self.transform.transforms if x.p))
|
35 |
-
except ImportError: # package not installed, skip
|
36 |
-
pass
|
37 |
-
except Exception as e:
|
38 |
-
LOGGER.info(colorstr('albumentations: ') + f'{e}')
|
39 |
-
|
40 |
-
def __call__(self, im, labels, p=1.0):
|
41 |
-
if self.transform and random.random() < p:
|
42 |
-
new = self.transform(image=im, bboxes=labels[:, 1:], class_labels=labels[:, 0]) # transformed
|
43 |
-
im, labels = new['image'], np.array([[c, *b] for c, b in zip(new['class_labels'], new['bboxes'])])
|
44 |
-
return im, labels
|
45 |
-
|
46 |
-
|
47 |
-
def augment_hsv(im, hgain=0.5, sgain=0.5, vgain=0.5):
|
48 |
-
# HSV color-space augmentation
|
49 |
-
if hgain or sgain or vgain:
|
50 |
-
r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains
|
51 |
-
hue, sat, val = cv2.split(cv2.cvtColor(im, cv2.COLOR_BGR2HSV))
|
52 |
-
dtype = im.dtype # uint8
|
53 |
-
|
54 |
-
x = np.arange(0, 256, dtype=r.dtype)
|
55 |
-
lut_hue = ((x * r[0]) % 180).astype(dtype)
|
56 |
-
lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
|
57 |
-
lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
|
58 |
-
|
59 |
-
im_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val)))
|
60 |
-
cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR, dst=im) # no return needed
|
61 |
-
|
62 |
-
|
63 |
-
def hist_equalize(im, clahe=True, bgr=False):
|
64 |
-
# Equalize histogram on BGR image 'im' with im.shape(n,m,3) and range 0-255
|
65 |
-
yuv = cv2.cvtColor(im, cv2.COLOR_BGR2YUV if bgr else cv2.COLOR_RGB2YUV)
|
66 |
-
if clahe:
|
67 |
-
c = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
|
68 |
-
yuv[:, :, 0] = c.apply(yuv[:, :, 0])
|
69 |
-
else:
|
70 |
-
yuv[:, :, 0] = cv2.equalizeHist(yuv[:, :, 0]) # equalize Y channel histogram
|
71 |
-
return cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR if bgr else cv2.COLOR_YUV2RGB) # convert YUV image to RGB
|
72 |
-
|
73 |
-
|
74 |
-
def replicate(im, labels):
|
75 |
-
# Replicate labels
|
76 |
-
h, w = im.shape[:2]
|
77 |
-
boxes = labels[:, 1:].astype(int)
|
78 |
-
x1, y1, x2, y2 = boxes.T
|
79 |
-
s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels)
|
80 |
-
for i in s.argsort()[:round(s.size * 0.5)]: # smallest indices
|
81 |
-
x1b, y1b, x2b, y2b = boxes[i]
|
82 |
-
bh, bw = y2b - y1b, x2b - x1b
|
83 |
-
yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) # offset x, y
|
84 |
-
x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh]
|
85 |
-
im[y1a:y2a, x1a:x2a] = im[y1b:y2b, x1b:x2b] # im4[ymin:ymax, xmin:xmax]
|
86 |
-
labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0)
|
87 |
-
|
88 |
-
return im, labels
|
89 |
-
|
90 |
-
|
91 |
-
def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
|
92 |
-
# Resize and pad image while meeting stride-multiple constraints
|
93 |
-
shape = im.shape[:2] # current shape [height, width]
|
94 |
-
if isinstance(new_shape, int):
|
95 |
-
new_shape = (new_shape, new_shape)
|
96 |
-
|
97 |
-
# Scale ratio (new / old)
|
98 |
-
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
|
99 |
-
if not scaleup: # only scale down, do not scale up (for better val mAP)
|
100 |
-
r = min(r, 1.0)
|
101 |
-
|
102 |
-
# Compute padding
|
103 |
-
ratio = r, r # width, height ratios
|
104 |
-
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
|
105 |
-
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
|
106 |
-
if auto: # minimum rectangle
|
107 |
-
dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
|
108 |
-
elif scaleFill: # stretch
|
109 |
-
dw, dh = 0.0, 0.0
|
110 |
-
new_unpad = (new_shape[1], new_shape[0])
|
111 |
-
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
|
112 |
-
|
113 |
-
dw /= 2 # divide padding into 2 sides
|
114 |
-
dh /= 2
|
115 |
-
|
116 |
-
if shape[::-1] != new_unpad: # resize
|
117 |
-
im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
|
118 |
-
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
|
119 |
-
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
|
120 |
-
im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
|
121 |
-
return im, ratio, (dw, dh)
|
122 |
-
|
123 |
-
|
124 |
-
def random_perspective(im, targets=(), segments=(), degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0,
|
125 |
-
border=(0, 0)):
|
126 |
-
# torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(0.1, 0.1), scale=(0.9, 1.1), shear=(-10, 10))
|
127 |
-
# targets = [cls, xyxy]
|
128 |
-
|
129 |
-
height = im.shape[0] + border[0] * 2 # shape(h,w,c)
|
130 |
-
width = im.shape[1] + border[1] * 2
|
131 |
-
|
132 |
-
# Center
|
133 |
-
C = np.eye(3)
|
134 |
-
C[0, 2] = -im.shape[1] / 2 # x translation (pixels)
|
135 |
-
C[1, 2] = -im.shape[0] / 2 # y translation (pixels)
|
136 |
-
|
137 |
-
# Perspective
|
138 |
-
P = np.eye(3)
|
139 |
-
P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y)
|
140 |
-
P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x)
|
141 |
-
|
142 |
-
# Rotation and Scale
|
143 |
-
R = np.eye(3)
|
144 |
-
a = random.uniform(-degrees, degrees)
|
145 |
-
# a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
|
146 |
-
s = random.uniform(1 - scale, 1 + scale)
|
147 |
-
# s = 2 ** random.uniform(-scale, scale)
|
148 |
-
R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
|
149 |
-
|
150 |
-
# Shear
|
151 |
-
S = np.eye(3)
|
152 |
-
S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
|
153 |
-
S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
|
154 |
-
|
155 |
-
# Translation
|
156 |
-
T = np.eye(3)
|
157 |
-
T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels)
|
158 |
-
T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels)
|
159 |
-
|
160 |
-
# Combined rotation matrix
|
161 |
-
M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT
|
162 |
-
if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
|
163 |
-
if perspective:
|
164 |
-
im = cv2.warpPerspective(im, M, dsize=(width, height), borderValue=(114, 114, 114))
|
165 |
-
else: # affine
|
166 |
-
im = cv2.warpAffine(im, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
|
167 |
-
|
168 |
-
# Visualize
|
169 |
-
# import matplotlib.pyplot as plt
|
170 |
-
# ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
|
171 |
-
# ax[0].imshow(im[:, :, ::-1]) # base
|
172 |
-
# ax[1].imshow(im2[:, :, ::-1]) # warped
|
173 |
-
|
174 |
-
# Transform label coordinates
|
175 |
-
n = len(targets)
|
176 |
-
if n:
|
177 |
-
use_segments = any(x.any() for x in segments)
|
178 |
-
new = np.zeros((n, 4))
|
179 |
-
if use_segments: # warp segments
|
180 |
-
segments = resample_segments(segments) # upsample
|
181 |
-
for i, segment in enumerate(segments):
|
182 |
-
xy = np.ones((len(segment), 3))
|
183 |
-
xy[:, :2] = segment
|
184 |
-
xy = xy @ M.T # transform
|
185 |
-
xy = xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2] # perspective rescale or affine
|
186 |
-
|
187 |
-
# clip
|
188 |
-
new[i] = segment2box(xy, width, height)
|
189 |
-
|
190 |
-
else: # warp boxes
|
191 |
-
xy = np.ones((n * 4, 3))
|
192 |
-
xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
|
193 |
-
xy = xy @ M.T # transform
|
194 |
-
xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]).reshape(n, 8) # perspective rescale or affine
|
195 |
-
|
196 |
-
# create new boxes
|
197 |
-
x = xy[:, [0, 2, 4, 6]]
|
198 |
-
y = xy[:, [1, 3, 5, 7]]
|
199 |
-
new = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
|
200 |
-
|
201 |
-
# clip
|
202 |
-
new[:, [0, 2]] = new[:, [0, 2]].clip(0, width)
|
203 |
-
new[:, [1, 3]] = new[:, [1, 3]].clip(0, height)
|
204 |
-
|
205 |
-
# filter candidates
|
206 |
-
i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01 if use_segments else 0.10)
|
207 |
-
targets = targets[i]
|
208 |
-
targets[:, 1:5] = new[i]
|
209 |
-
|
210 |
-
return im, targets
|
211 |
-
|
212 |
-
|
213 |
-
def copy_paste(im, labels, segments, p=0.5):
|
214 |
-
# Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy)
|
215 |
-
n = len(segments)
|
216 |
-
if p and n:
|
217 |
-
h, w, c = im.shape # height, width, channels
|
218 |
-
im_new = np.zeros(im.shape, np.uint8)
|
219 |
-
for j in random.sample(range(n), k=round(p * n)):
|
220 |
-
l, s = labels[j], segments[j]
|
221 |
-
box = w - l[3], l[2], w - l[1], l[4]
|
222 |
-
ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
|
223 |
-
if (ioa < 0.30).all(): # allow 30% obscuration of existing labels
|
224 |
-
labels = np.concatenate((labels, [[l[0], *box]]), 0)
|
225 |
-
segments.append(np.concatenate((w - s[:, 0:1], s[:, 1:2]), 1))
|
226 |
-
cv2.drawContours(im_new, [segments[j].astype(np.int32)], -1, (255, 255, 255), cv2.FILLED)
|
227 |
-
|
228 |
-
result = cv2.bitwise_and(src1=im, src2=im_new)
|
229 |
-
result = cv2.flip(result, 1) # augment segments (flip left-right)
|
230 |
-
i = result > 0 # pixels to replace
|
231 |
-
# i[:, :] = result.max(2).reshape(h, w, 1) # act over ch
|
232 |
-
im[i] = result[i] # cv2.imwrite('debug.jpg', im) # debug
|
233 |
-
|
234 |
-
return im, labels, segments
|
235 |
-
|
236 |
-
|
237 |
-
def cutout(im, labels, p=0.5):
|
238 |
-
# Applies image cutout augmentation https://arxiv.org/abs/1708.04552
|
239 |
-
if random.random() < p:
|
240 |
-
h, w = im.shape[:2]
|
241 |
-
scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction
|
242 |
-
for s in scales:
|
243 |
-
mask_h = random.randint(1, int(h * s)) # create random masks
|
244 |
-
mask_w = random.randint(1, int(w * s))
|
245 |
-
|
246 |
-
# box
|
247 |
-
xmin = max(0, random.randint(0, w) - mask_w // 2)
|
248 |
-
ymin = max(0, random.randint(0, h) - mask_h // 2)
|
249 |
-
xmax = min(w, xmin + mask_w)
|
250 |
-
ymax = min(h, ymin + mask_h)
|
251 |
-
|
252 |
-
# apply random color mask
|
253 |
-
im[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]
|
254 |
-
|
255 |
-
# return unobscured labels
|
256 |
-
if len(labels) and s > 0.03:
|
257 |
-
box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
|
258 |
-
ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
|
259 |
-
labels = labels[ioa < 0.60] # remove >60% obscured labels
|
260 |
-
|
261 |
-
return labels
|
262 |
-
|
263 |
-
|
264 |
-
def mixup(im, labels, im2, labels2):
|
265 |
-
# Applies MixUp augmentation https://arxiv.org/pdf/1710.09412.pdf
|
266 |
-
r = np.random.beta(32.0, 32.0) # mixup ratio, alpha=beta=32.0
|
267 |
-
im = (im * r + im2 * (1 - r)).astype(np.uint8)
|
268 |
-
labels = np.concatenate((labels, labels2), 0)
|
269 |
-
return im, labels
|
270 |
-
|
271 |
-
|
272 |
-
def box_candidates(box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16): # box1(4,n), box2(4,n)
|
273 |
-
# Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
|
274 |
-
w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
|
275 |
-
w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
|
276 |
-
ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio
|
277 |
-
return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) # candidates
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/utils/autoanchor.py
DELETED
@@ -1,170 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
"""
|
3 |
-
AutoAnchor utils
|
4 |
-
"""
|
5 |
-
|
6 |
-
import random
|
7 |
-
|
8 |
-
import numpy as np
|
9 |
-
import torch
|
10 |
-
import yaml
|
11 |
-
from tqdm import tqdm
|
12 |
-
|
13 |
-
from utils.general import LOGGER, colorstr, emojis
|
14 |
-
|
15 |
-
PREFIX = colorstr('AutoAnchor: ')
|
16 |
-
|
17 |
-
|
18 |
-
def check_anchor_order(m):
|
19 |
-
# Check anchor order against stride order for YOLOv5 Detect() module m, and correct if necessary
|
20 |
-
a = m.anchors.prod(-1).mean(-1).view(-1) # mean anchor area per output layer
|
21 |
-
da = a[-1] - a[0] # delta a
|
22 |
-
ds = m.stride[-1] - m.stride[0] # delta s
|
23 |
-
if da and (da.sign() != ds.sign()): # same order
|
24 |
-
LOGGER.info(f'{PREFIX}Reversing anchor order')
|
25 |
-
m.anchors[:] = m.anchors.flip(0)
|
26 |
-
|
27 |
-
|
28 |
-
def check_anchors(dataset, model, thr=4.0, imgsz=640):
|
29 |
-
# Check anchor fit to data, recompute if necessary
|
30 |
-
m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect()
|
31 |
-
shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
|
32 |
-
scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale
|
33 |
-
wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float() # wh
|
34 |
-
|
35 |
-
def metric(k): # compute metric
|
36 |
-
r = wh[:, None] / k[None]
|
37 |
-
x = torch.min(r, 1 / r).min(2)[0] # ratio metric
|
38 |
-
best = x.max(1)[0] # best_x
|
39 |
-
aat = (x > 1 / thr).float().sum(1).mean() # anchors above threshold
|
40 |
-
bpr = (best > 1 / thr).float().mean() # best possible recall
|
41 |
-
return bpr, aat
|
42 |
-
|
43 |
-
stride = m.stride.to(m.anchors.device).view(-1, 1, 1) # model strides
|
44 |
-
anchors = m.anchors.clone() * stride # current anchors
|
45 |
-
bpr, aat = metric(anchors.cpu().view(-1, 2))
|
46 |
-
s = f'\n{PREFIX}{aat:.2f} anchors/target, {bpr:.3f} Best Possible Recall (BPR). '
|
47 |
-
if bpr > 0.98: # threshold to recompute
|
48 |
-
LOGGER.info(emojis(f'{s}Current anchors are a good fit to dataset ✅'))
|
49 |
-
else:
|
50 |
-
LOGGER.info(emojis(f'{s}Anchors are a poor fit to dataset ⚠️, attempting to improve...'))
|
51 |
-
na = m.anchors.numel() // 2 # number of anchors
|
52 |
-
try:
|
53 |
-
anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
|
54 |
-
except Exception as e:
|
55 |
-
LOGGER.info(f'{PREFIX}ERROR: {e}')
|
56 |
-
new_bpr = metric(anchors)[0]
|
57 |
-
if new_bpr > bpr: # replace anchors
|
58 |
-
anchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors)
|
59 |
-
m.anchors[:] = anchors.clone().view_as(m.anchors)
|
60 |
-
check_anchor_order(m) # must be in pixel-space (not grid-space)
|
61 |
-
m.anchors /= stride
|
62 |
-
s = f'{PREFIX}Done ✅ (optional: update model *.yaml to use these anchors in the future)'
|
63 |
-
else:
|
64 |
-
s = f'{PREFIX}Done ⚠️ (original anchors better than new anchors, proceeding with original anchors)'
|
65 |
-
LOGGER.info(emojis(s))
|
66 |
-
|
67 |
-
|
68 |
-
def kmean_anchors(dataset='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
|
69 |
-
""" Creates kmeans-evolved anchors from training dataset
|
70 |
-
|
71 |
-
Arguments:
|
72 |
-
dataset: path to data.yaml, or a loaded dataset
|
73 |
-
n: number of anchors
|
74 |
-
img_size: image size used for training
|
75 |
-
thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0
|
76 |
-
gen: generations to evolve anchors using genetic algorithm
|
77 |
-
verbose: print all results
|
78 |
-
|
79 |
-
Return:
|
80 |
-
k: kmeans evolved anchors
|
81 |
-
|
82 |
-
Usage:
|
83 |
-
from utils.autoanchor import *; _ = kmean_anchors()
|
84 |
-
"""
|
85 |
-
from scipy.cluster.vq import kmeans
|
86 |
-
|
87 |
-
npr = np.random
|
88 |
-
thr = 1 / thr
|
89 |
-
|
90 |
-
def metric(k, wh): # compute metrics
|
91 |
-
r = wh[:, None] / k[None]
|
92 |
-
x = torch.min(r, 1 / r).min(2)[0] # ratio metric
|
93 |
-
# x = wh_iou(wh, torch.tensor(k)) # iou metric
|
94 |
-
return x, x.max(1)[0] # x, best_x
|
95 |
-
|
96 |
-
def anchor_fitness(k): # mutation fitness
|
97 |
-
_, best = metric(torch.tensor(k, dtype=torch.float32), wh)
|
98 |
-
return (best * (best > thr).float()).mean() # fitness
|
99 |
-
|
100 |
-
def print_results(k, verbose=True):
|
101 |
-
k = k[np.argsort(k.prod(1))] # sort small to large
|
102 |
-
x, best = metric(k, wh0)
|
103 |
-
bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr
|
104 |
-
s = f'{PREFIX}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr\n' \
|
105 |
-
f'{PREFIX}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, ' \
|
106 |
-
f'past_thr={x[x > thr].mean():.3f}-mean: '
|
107 |
-
for i, x in enumerate(k):
|
108 |
-
s += '%i,%i, ' % (round(x[0]), round(x[1]))
|
109 |
-
if verbose:
|
110 |
-
LOGGER.info(s[:-2])
|
111 |
-
return k
|
112 |
-
|
113 |
-
if isinstance(dataset, str): # *.yaml file
|
114 |
-
with open(dataset, errors='ignore') as f:
|
115 |
-
data_dict = yaml.safe_load(f) # model dict
|
116 |
-
from utils.datasets import LoadImagesAndLabels
|
117 |
-
dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True)
|
118 |
-
|
119 |
-
# Get label wh
|
120 |
-
shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
|
121 |
-
wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh
|
122 |
-
|
123 |
-
# Filter
|
124 |
-
i = (wh0 < 3.0).any(1).sum()
|
125 |
-
if i:
|
126 |
-
LOGGER.info(f'{PREFIX}WARNING: Extremely small objects found: {i} of {len(wh0)} labels are < 3 pixels in size')
|
127 |
-
wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels
|
128 |
-
# wh = wh * (npr.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1
|
129 |
-
|
130 |
-
# Kmeans init
|
131 |
-
try:
|
132 |
-
LOGGER.info(f'{PREFIX}Running kmeans for {n} anchors on {len(wh)} points...')
|
133 |
-
assert n <= len(wh) # apply overdetermined constraint
|
134 |
-
s = wh.std(0) # sigmas for whitening
|
135 |
-
k = kmeans(wh / s, n, iter=30)[0] * s # points
|
136 |
-
assert n == len(k) # kmeans may return fewer points than requested if wh is insufficient or too similar
|
137 |
-
except Exception:
|
138 |
-
LOGGER.warning(f'{PREFIX}WARNING: switching strategies from kmeans to random init')
|
139 |
-
k = np.sort(npr.rand(n * 2)).reshape(n, 2) * img_size # random init
|
140 |
-
wh, wh0 = (torch.tensor(x, dtype=torch.float32) for x in (wh, wh0))
|
141 |
-
k = print_results(k, verbose=False)
|
142 |
-
|
143 |
-
# Plot
|
144 |
-
# k, d = [None] * 20, [None] * 20
|
145 |
-
# for i in tqdm(range(1, 21)):
|
146 |
-
# k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance
|
147 |
-
# fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True)
|
148 |
-
# ax = ax.ravel()
|
149 |
-
# ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.')
|
150 |
-
# fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh
|
151 |
-
# ax[0].hist(wh[wh[:, 0]<100, 0],400)
|
152 |
-
# ax[1].hist(wh[wh[:, 1]<100, 1],400)
|
153 |
-
# fig.savefig('wh.png', dpi=200)
|
154 |
-
|
155 |
-
# Evolve
|
156 |
-
f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma
|
157 |
-
pbar = tqdm(range(gen), bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar
|
158 |
-
for _ in pbar:
|
159 |
-
v = np.ones(sh)
|
160 |
-
while (v == 1).all(): # mutate until a change occurs (prevent duplicates)
|
161 |
-
v = ((npr.random(sh) < mp) * random.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
|
162 |
-
kg = (k.copy() * v).clip(min=2.0)
|
163 |
-
fg = anchor_fitness(kg)
|
164 |
-
if fg > f:
|
165 |
-
f, k = fg, kg.copy()
|
166 |
-
pbar.desc = f'{PREFIX}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}'
|
167 |
-
if verbose:
|
168 |
-
print_results(k, verbose)
|
169 |
-
|
170 |
-
return print_results(k)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/utils/autobatch.py
DELETED
@@ -1,58 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
"""
|
3 |
-
Auto-batch utils
|
4 |
-
"""
|
5 |
-
|
6 |
-
from copy import deepcopy
|
7 |
-
|
8 |
-
import numpy as np
|
9 |
-
import torch
|
10 |
-
from torch.cuda import amp
|
11 |
-
|
12 |
-
from utils.general import LOGGER, colorstr
|
13 |
-
from utils.torch_utils import profile
|
14 |
-
|
15 |
-
|
16 |
-
def check_train_batch_size(model, imgsz=640):
|
17 |
-
# Check YOLOv5 training batch size
|
18 |
-
with amp.autocast():
|
19 |
-
return autobatch(deepcopy(model).train(), imgsz) # compute optimal batch size
|
20 |
-
|
21 |
-
|
22 |
-
def autobatch(model, imgsz=640, fraction=0.9, batch_size=16):
|
23 |
-
# Automatically estimate best batch size to use `fraction` of available CUDA memory
|
24 |
-
# Usage:
|
25 |
-
# import torch
|
26 |
-
# from utils.autobatch import autobatch
|
27 |
-
# model = torch.hub.load('ultralytics/yolov5', 'yolov5s', autoshape=False)
|
28 |
-
# print(autobatch(model))
|
29 |
-
|
30 |
-
prefix = colorstr('AutoBatch: ')
|
31 |
-
LOGGER.info(f'{prefix}Computing optimal batch size for --imgsz {imgsz}')
|
32 |
-
device = next(model.parameters()).device # get model device
|
33 |
-
if device.type == 'cpu':
|
34 |
-
LOGGER.info(f'{prefix}CUDA not detected, using default CPU batch-size {batch_size}')
|
35 |
-
return batch_size
|
36 |
-
|
37 |
-
gb = 1 << 30 # bytes to GiB (1024 ** 3)
|
38 |
-
d = str(device).upper() # 'CUDA:0'
|
39 |
-
properties = torch.cuda.get_device_properties(device) # device properties
|
40 |
-
t = properties.total_memory / gb # (GiB)
|
41 |
-
r = torch.cuda.memory_reserved(device) / gb # (GiB)
|
42 |
-
a = torch.cuda.memory_allocated(device) / gb # (GiB)
|
43 |
-
f = t - (r + a) # free inside reserved
|
44 |
-
LOGGER.info(f'{prefix}{d} ({properties.name}) {t:.2f}G total, {r:.2f}G reserved, {a:.2f}G allocated, {f:.2f}G free')
|
45 |
-
|
46 |
-
batch_sizes = [1, 2, 4, 8, 16]
|
47 |
-
try:
|
48 |
-
img = [torch.zeros(b, 3, imgsz, imgsz) for b in batch_sizes]
|
49 |
-
y = profile(img, model, n=3, device=device)
|
50 |
-
except Exception as e:
|
51 |
-
LOGGER.warning(f'{prefix}{e}')
|
52 |
-
|
53 |
-
y = [x[2] for x in y if x] # memory [2]
|
54 |
-
batch_sizes = batch_sizes[:len(y)]
|
55 |
-
p = np.polyfit(batch_sizes, y, deg=1) # first degree polynomial fit
|
56 |
-
b = int((f * fraction - p[1]) / p[0]) # y intercept (optimal batch size)
|
57 |
-
LOGGER.info(f'{prefix}Using batch-size {b} for {d} {t * fraction:.2f}G/{t:.2f}G ({fraction * 100:.0f}%)')
|
58 |
-
return b
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/utils/aws/__init__.py
DELETED
File without changes
|
ultralytics/yolov5/utils/aws/mime.sh
DELETED
@@ -1,26 +0,0 @@
|
|
1 |
-
# AWS EC2 instance startup 'MIME' script https://aws.amazon.com/premiumsupport/knowledge-center/execute-user-data-ec2/
|
2 |
-
# This script will run on every instance restart, not only on first start
|
3 |
-
# --- DO NOT COPY ABOVE COMMENTS WHEN PASTING INTO USERDATA ---
|
4 |
-
|
5 |
-
Content-Type: multipart/mixed; boundary="//"
|
6 |
-
MIME-Version: 1.0
|
7 |
-
|
8 |
-
--//
|
9 |
-
Content-Type: text/cloud-config; charset="us-ascii"
|
10 |
-
MIME-Version: 1.0
|
11 |
-
Content-Transfer-Encoding: 7bit
|
12 |
-
Content-Disposition: attachment; filename="cloud-config.txt"
|
13 |
-
|
14 |
-
#cloud-config
|
15 |
-
cloud_final_modules:
|
16 |
-
- [scripts-user, always]
|
17 |
-
|
18 |
-
--//
|
19 |
-
Content-Type: text/x-shellscript; charset="us-ascii"
|
20 |
-
MIME-Version: 1.0
|
21 |
-
Content-Transfer-Encoding: 7bit
|
22 |
-
Content-Disposition: attachment; filename="userdata.txt"
|
23 |
-
|
24 |
-
#!/bin/bash
|
25 |
-
# --- paste contents of userdata.sh here ---
|
26 |
-
--//
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/utils/aws/resume.py
DELETED
@@ -1,40 +0,0 @@
|
|
1 |
-
# Resume all interrupted trainings in yolov5/ dir including DDP trainings
|
2 |
-
# Usage: $ python utils/aws/resume.py
|
3 |
-
|
4 |
-
import os
|
5 |
-
import sys
|
6 |
-
from pathlib import Path
|
7 |
-
|
8 |
-
import torch
|
9 |
-
import yaml
|
10 |
-
|
11 |
-
FILE = Path(__file__).resolve()
|
12 |
-
ROOT = FILE.parents[2] # YOLOv5 root directory
|
13 |
-
if str(ROOT) not in sys.path:
|
14 |
-
sys.path.append(str(ROOT)) # add ROOT to PATH
|
15 |
-
|
16 |
-
port = 0 # --master_port
|
17 |
-
path = Path('').resolve()
|
18 |
-
for last in path.rglob('*/**/last.pt'):
|
19 |
-
ckpt = torch.load(last)
|
20 |
-
if ckpt['optimizer'] is None:
|
21 |
-
continue
|
22 |
-
|
23 |
-
# Load opt.yaml
|
24 |
-
with open(last.parent.parent / 'opt.yaml', errors='ignore') as f:
|
25 |
-
opt = yaml.safe_load(f)
|
26 |
-
|
27 |
-
# Get device count
|
28 |
-
d = opt['device'].split(',') # devices
|
29 |
-
nd = len(d) # number of devices
|
30 |
-
ddp = nd > 1 or (nd == 0 and torch.cuda.device_count() > 1) # distributed data parallel
|
31 |
-
|
32 |
-
if ddp: # multi-GPU
|
33 |
-
port += 1
|
34 |
-
cmd = f'python -m torch.distributed.run --nproc_per_node {nd} --master_port {port} train.py --resume {last}'
|
35 |
-
else: # single-GPU
|
36 |
-
cmd = f'python train.py --resume {last}'
|
37 |
-
|
38 |
-
cmd += ' > /dev/null 2>&1 &' # redirect output to dev/null and run in daemon thread
|
39 |
-
print(cmd)
|
40 |
-
os.system(cmd)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/utils/aws/userdata.sh
DELETED
@@ -1,27 +0,0 @@
|
|
1 |
-
#!/bin/bash
|
2 |
-
# AWS EC2 instance startup script https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html
|
3 |
-
# This script will run only once on first instance start (for a re-start script see mime.sh)
|
4 |
-
# /home/ubuntu (ubuntu) or /home/ec2-user (amazon-linux) is working dir
|
5 |
-
# Use >300 GB SSD
|
6 |
-
|
7 |
-
cd home/ubuntu
|
8 |
-
if [ ! -d yolov5 ]; then
|
9 |
-
echo "Running first-time script." # install dependencies, download COCO, pull Docker
|
10 |
-
git clone https://github.com/ultralytics/yolov5 -b master && sudo chmod -R 777 yolov5
|
11 |
-
cd yolov5
|
12 |
-
bash data/scripts/get_coco.sh && echo "COCO done." &
|
13 |
-
sudo docker pull ultralytics/yolov5:latest && echo "Docker done." &
|
14 |
-
python -m pip install --upgrade pip && pip install -r requirements.txt && python detect.py && echo "Requirements done." &
|
15 |
-
wait && echo "All tasks done." # finish background tasks
|
16 |
-
else
|
17 |
-
echo "Running re-start script." # resume interrupted runs
|
18 |
-
i=0
|
19 |
-
list=$(sudo docker ps -qa) # container list i.e. $'one\ntwo\nthree\nfour'
|
20 |
-
while IFS= read -r id; do
|
21 |
-
((i++))
|
22 |
-
echo "restarting container $i: $id"
|
23 |
-
sudo docker start $id
|
24 |
-
# sudo docker exec -it $id python train.py --resume # single-GPU
|
25 |
-
sudo docker exec -d $id python utils/aws/resume.py # multi-scenario
|
26 |
-
done <<<"$list"
|
27 |
-
fi
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/utils/benchmarks.py
DELETED
@@ -1,104 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
"""
|
3 |
-
Run YOLOv5 benchmarks on all supported export formats
|
4 |
-
|
5 |
-
Format | `export.py --include` | Model
|
6 |
-
--- | --- | ---
|
7 |
-
PyTorch | - | yolov5s.pt
|
8 |
-
TorchScript | `torchscript` | yolov5s.torchscript
|
9 |
-
ONNX | `onnx` | yolov5s.onnx
|
10 |
-
OpenVINO | `openvino` | yolov5s_openvino_model/
|
11 |
-
TensorRT | `engine` | yolov5s.engine
|
12 |
-
CoreML | `coreml` | yolov5s.mlmodel
|
13 |
-
TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/
|
14 |
-
TensorFlow GraphDef | `pb` | yolov5s.pb
|
15 |
-
TensorFlow Lite | `tflite` | yolov5s.tflite
|
16 |
-
TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite
|
17 |
-
TensorFlow.js | `tfjs` | yolov5s_web_model/
|
18 |
-
|
19 |
-
Requirements:
|
20 |
-
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU
|
21 |
-
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU
|
22 |
-
$ pip install -U nvidia-tensorrt --index-url https://pypi.ngc.nvidia.com # TensorRT
|
23 |
-
|
24 |
-
Usage:
|
25 |
-
$ python utils/benchmarks.py --weights yolov5s.pt --img 640
|
26 |
-
"""
|
27 |
-
|
28 |
-
import argparse
|
29 |
-
import sys
|
30 |
-
import time
|
31 |
-
from pathlib import Path
|
32 |
-
|
33 |
-
import pandas as pd
|
34 |
-
|
35 |
-
FILE = Path(__file__).resolve()
|
36 |
-
ROOT = FILE.parents[1] # YOLOv5 root directory
|
37 |
-
if str(ROOT) not in sys.path:
|
38 |
-
sys.path.append(str(ROOT)) # add ROOT to PATH
|
39 |
-
# ROOT = ROOT.relative_to(Path.cwd()) # relative
|
40 |
-
|
41 |
-
import export
|
42 |
-
import val
|
43 |
-
from utils import notebook_init
|
44 |
-
from utils.general import LOGGER, print_args
|
45 |
-
from utils.torch_utils import select_device
|
46 |
-
|
47 |
-
|
48 |
-
def run(weights=ROOT / 'yolov5s.pt', # weights path
|
49 |
-
imgsz=640, # inference size (pixels)
|
50 |
-
batch_size=1, # batch size
|
51 |
-
data=ROOT / 'data/coco128.yaml', # dataset.yaml path
|
52 |
-
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
53 |
-
half=False, # use FP16 half-precision inference
|
54 |
-
):
|
55 |
-
y, t = [], time.time()
|
56 |
-
formats = export.export_formats()
|
57 |
-
device = select_device(device)
|
58 |
-
for i, (name, f, suffix, gpu) in formats.iterrows(): # index, (name, file, suffix, gpu-capable)
|
59 |
-
try:
|
60 |
-
if device.type != 'cpu':
|
61 |
-
assert gpu, f'{name} inference not supported on GPU'
|
62 |
-
if f == '-':
|
63 |
-
w = weights # PyTorch format
|
64 |
-
else:
|
65 |
-
w = export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1] # all others
|
66 |
-
assert suffix in str(w), 'export failed'
|
67 |
-
result = val.run(data, w, batch_size, imgsz, plots=False, device=device, task='benchmark', half=half)
|
68 |
-
metrics = result[0] # metrics (mp, mr, map50, map, *losses(box, obj, cls))
|
69 |
-
speeds = result[2] # times (preprocess, inference, postprocess)
|
70 |
-
y.append([name, round(metrics[3], 4), round(speeds[1], 2)]) # mAP, t_inference
|
71 |
-
except Exception as e:
|
72 |
-
LOGGER.warning(f'WARNING: Benchmark failure for {name}: {e}')
|
73 |
-
y.append([name, None, None]) # mAP, t_inference
|
74 |
-
|
75 |
-
# Print results
|
76 |
-
LOGGER.info('\n')
|
77 |
-
parse_opt()
|
78 |
-
notebook_init() # print system info
|
79 |
-
py = pd.DataFrame(y, columns=['Format', '[email protected]:0.95', 'Inference time (ms)'])
|
80 |
-
LOGGER.info(f'\nBenchmarks complete ({time.time() - t:.2f}s)')
|
81 |
-
LOGGER.info(str(py))
|
82 |
-
return py
|
83 |
-
|
84 |
-
|
85 |
-
def parse_opt():
|
86 |
-
parser = argparse.ArgumentParser()
|
87 |
-
parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='weights path')
|
88 |
-
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
|
89 |
-
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
|
90 |
-
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
|
91 |
-
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
92 |
-
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
|
93 |
-
opt = parser.parse_args()
|
94 |
-
print_args(FILE.stem, opt)
|
95 |
-
return opt
|
96 |
-
|
97 |
-
|
98 |
-
def main(opt):
|
99 |
-
run(**vars(opt))
|
100 |
-
|
101 |
-
|
102 |
-
if __name__ == "__main__":
|
103 |
-
opt = parse_opt()
|
104 |
-
main(opt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/utils/callbacks.py
DELETED
@@ -1,78 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
"""
|
3 |
-
Callback utils
|
4 |
-
"""
|
5 |
-
|
6 |
-
|
7 |
-
class Callbacks:
|
8 |
-
""""
|
9 |
-
Handles all registered callbacks for YOLOv5 Hooks
|
10 |
-
"""
|
11 |
-
|
12 |
-
def __init__(self):
|
13 |
-
# Define the available callbacks
|
14 |
-
self._callbacks = {
|
15 |
-
'on_pretrain_routine_start': [],
|
16 |
-
'on_pretrain_routine_end': [],
|
17 |
-
|
18 |
-
'on_train_start': [],
|
19 |
-
'on_train_epoch_start': [],
|
20 |
-
'on_train_batch_start': [],
|
21 |
-
'optimizer_step': [],
|
22 |
-
'on_before_zero_grad': [],
|
23 |
-
'on_train_batch_end': [],
|
24 |
-
'on_train_epoch_end': [],
|
25 |
-
|
26 |
-
'on_val_start': [],
|
27 |
-
'on_val_batch_start': [],
|
28 |
-
'on_val_image_end': [],
|
29 |
-
'on_val_batch_end': [],
|
30 |
-
'on_val_end': [],
|
31 |
-
|
32 |
-
'on_fit_epoch_end': [], # fit = train + val
|
33 |
-
'on_model_save': [],
|
34 |
-
'on_train_end': [],
|
35 |
-
'on_params_update': [],
|
36 |
-
'teardown': [],
|
37 |
-
}
|
38 |
-
self.stop_training = False # set True to interrupt training
|
39 |
-
|
40 |
-
def register_action(self, hook, name='', callback=None):
|
41 |
-
"""
|
42 |
-
Register a new action to a callback hook
|
43 |
-
|
44 |
-
Args:
|
45 |
-
hook The callback hook name to register the action to
|
46 |
-
name The name of the action for later reference
|
47 |
-
callback The callback to fire
|
48 |
-
"""
|
49 |
-
assert hook in self._callbacks, f"hook '{hook}' not found in callbacks {self._callbacks}"
|
50 |
-
assert callable(callback), f"callback '{callback}' is not callable"
|
51 |
-
self._callbacks[hook].append({'name': name, 'callback': callback})
|
52 |
-
|
53 |
-
def get_registered_actions(self, hook=None):
|
54 |
-
""""
|
55 |
-
Returns all the registered actions by callback hook
|
56 |
-
|
57 |
-
Args:
|
58 |
-
hook The name of the hook to check, defaults to all
|
59 |
-
"""
|
60 |
-
if hook:
|
61 |
-
return self._callbacks[hook]
|
62 |
-
else:
|
63 |
-
return self._callbacks
|
64 |
-
|
65 |
-
def run(self, hook, *args, **kwargs):
|
66 |
-
"""
|
67 |
-
Loop through the registered actions and fire all callbacks
|
68 |
-
|
69 |
-
Args:
|
70 |
-
hook The name of the hook to check, defaults to all
|
71 |
-
args Arguments to receive from YOLOv5
|
72 |
-
kwargs Keyword Arguments to receive from YOLOv5
|
73 |
-
"""
|
74 |
-
|
75 |
-
assert hook in self._callbacks, f"hook '{hook}' not found in callbacks {self._callbacks}"
|
76 |
-
|
77 |
-
for logger in self._callbacks[hook]:
|
78 |
-
logger['callback'](*args, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/utils/datasets.py
DELETED
@@ -1,1039 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
"""
|
3 |
-
Dataloaders and dataset utils
|
4 |
-
"""
|
5 |
-
|
6 |
-
import glob
|
7 |
-
import hashlib
|
8 |
-
import json
|
9 |
-
import math
|
10 |
-
import os
|
11 |
-
import random
|
12 |
-
import shutil
|
13 |
-
import time
|
14 |
-
from itertools import repeat
|
15 |
-
from multiprocessing.pool import Pool, ThreadPool
|
16 |
-
from pathlib import Path
|
17 |
-
from threading import Thread
|
18 |
-
from urllib.parse import urlparse
|
19 |
-
from zipfile import ZipFile
|
20 |
-
|
21 |
-
import cv2
|
22 |
-
import numpy as np
|
23 |
-
import torch
|
24 |
-
import torch.nn.functional as F
|
25 |
-
import yaml
|
26 |
-
from PIL import ExifTags, Image, ImageOps
|
27 |
-
from torch.utils.data import DataLoader, Dataset, dataloader, distributed
|
28 |
-
from tqdm import tqdm
|
29 |
-
|
30 |
-
from utils.augmentations import Albumentations, augment_hsv, copy_paste, letterbox, mixup, random_perspective
|
31 |
-
from utils.general import (DATASETS_DIR, LOGGER, NUM_THREADS, check_dataset, check_requirements, check_yaml, clean_str,
|
32 |
-
segments2boxes, xyn2xy, xywh2xyxy, xywhn2xyxy, xyxy2xywhn)
|
33 |
-
from utils.torch_utils import torch_distributed_zero_first
|
34 |
-
|
35 |
-
# Parameters
|
36 |
-
HELP_URL = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
|
37 |
-
IMG_FORMATS = 'bmp', 'dng', 'jpeg', 'jpg', 'mpo', 'png', 'tif', 'tiff', 'webp' # include image suffixes
|
38 |
-
VID_FORMATS = 'asf', 'avi', 'gif', 'm4v', 'mkv', 'mov', 'mp4', 'mpeg', 'mpg', 'ts', 'wmv' # include video suffixes
|
39 |
-
BAR_FORMAT = '{l_bar}{bar:10}{r_bar}{bar:-10b}' # tqdm bar format
|
40 |
-
|
41 |
-
# Get orientation exif tag
|
42 |
-
for orientation in ExifTags.TAGS.keys():
|
43 |
-
if ExifTags.TAGS[orientation] == 'Orientation':
|
44 |
-
break
|
45 |
-
|
46 |
-
|
47 |
-
def get_hash(paths):
|
48 |
-
# Returns a single hash value of a list of paths (files or dirs)
|
49 |
-
size = sum(os.path.getsize(p) for p in paths if os.path.exists(p)) # sizes
|
50 |
-
h = hashlib.md5(str(size).encode()) # hash sizes
|
51 |
-
h.update(''.join(paths).encode()) # hash paths
|
52 |
-
return h.hexdigest() # return hash
|
53 |
-
|
54 |
-
|
55 |
-
def exif_size(img):
|
56 |
-
# Returns exif-corrected PIL size
|
57 |
-
s = img.size # (width, height)
|
58 |
-
try:
|
59 |
-
rotation = dict(img._getexif().items())[orientation]
|
60 |
-
if rotation == 6: # rotation 270
|
61 |
-
s = (s[1], s[0])
|
62 |
-
elif rotation == 8: # rotation 90
|
63 |
-
s = (s[1], s[0])
|
64 |
-
except Exception:
|
65 |
-
pass
|
66 |
-
|
67 |
-
return s
|
68 |
-
|
69 |
-
|
70 |
-
def exif_transpose(image):
|
71 |
-
"""
|
72 |
-
Transpose a PIL image accordingly if it has an EXIF Orientation tag.
|
73 |
-
Inplace version of https://github.com/python-pillow/Pillow/blob/master/src/PIL/ImageOps.py exif_transpose()
|
74 |
-
|
75 |
-
:param image: The image to transpose.
|
76 |
-
:return: An image.
|
77 |
-
"""
|
78 |
-
exif = image.getexif()
|
79 |
-
orientation = exif.get(0x0112, 1) # default 1
|
80 |
-
if orientation > 1:
|
81 |
-
method = {2: Image.FLIP_LEFT_RIGHT,
|
82 |
-
3: Image.ROTATE_180,
|
83 |
-
4: Image.FLIP_TOP_BOTTOM,
|
84 |
-
5: Image.TRANSPOSE,
|
85 |
-
6: Image.ROTATE_270,
|
86 |
-
7: Image.TRANSVERSE,
|
87 |
-
8: Image.ROTATE_90,
|
88 |
-
}.get(orientation)
|
89 |
-
if method is not None:
|
90 |
-
image = image.transpose(method)
|
91 |
-
del exif[0x0112]
|
92 |
-
image.info["exif"] = exif.tobytes()
|
93 |
-
return image
|
94 |
-
|
95 |
-
|
96 |
-
def create_dataloader(path, imgsz, batch_size, stride, single_cls=False, hyp=None, augment=False, cache=False, pad=0.0,
|
97 |
-
rect=False, rank=-1, workers=8, image_weights=False, quad=False, prefix='', shuffle=False):
|
98 |
-
if rect and shuffle:
|
99 |
-
LOGGER.warning('WARNING: --rect is incompatible with DataLoader shuffle, setting shuffle=False')
|
100 |
-
shuffle = False
|
101 |
-
with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP
|
102 |
-
dataset = LoadImagesAndLabels(path, imgsz, batch_size,
|
103 |
-
augment=augment, # augmentation
|
104 |
-
hyp=hyp, # hyperparameters
|
105 |
-
rect=rect, # rectangular batches
|
106 |
-
cache_images=cache,
|
107 |
-
single_cls=single_cls,
|
108 |
-
stride=int(stride),
|
109 |
-
pad=pad,
|
110 |
-
image_weights=image_weights,
|
111 |
-
prefix=prefix)
|
112 |
-
|
113 |
-
batch_size = min(batch_size, len(dataset))
|
114 |
-
nd = torch.cuda.device_count() # number of CUDA devices
|
115 |
-
nw = min([os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers]) # number of workers
|
116 |
-
sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle)
|
117 |
-
loader = DataLoader if image_weights else InfiniteDataLoader # only DataLoader allows for attribute updates
|
118 |
-
return loader(dataset,
|
119 |
-
batch_size=batch_size,
|
120 |
-
shuffle=shuffle and sampler is None,
|
121 |
-
num_workers=nw,
|
122 |
-
sampler=sampler,
|
123 |
-
pin_memory=True,
|
124 |
-
collate_fn=LoadImagesAndLabels.collate_fn4 if quad else LoadImagesAndLabels.collate_fn), dataset
|
125 |
-
|
126 |
-
|
127 |
-
class InfiniteDataLoader(dataloader.DataLoader):
|
128 |
-
""" Dataloader that reuses workers
|
129 |
-
|
130 |
-
Uses same syntax as vanilla DataLoader
|
131 |
-
"""
|
132 |
-
|
133 |
-
def __init__(self, *args, **kwargs):
|
134 |
-
super().__init__(*args, **kwargs)
|
135 |
-
object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler))
|
136 |
-
self.iterator = super().__iter__()
|
137 |
-
|
138 |
-
def __len__(self):
|
139 |
-
return len(self.batch_sampler.sampler)
|
140 |
-
|
141 |
-
def __iter__(self):
|
142 |
-
for i in range(len(self)):
|
143 |
-
yield next(self.iterator)
|
144 |
-
|
145 |
-
|
146 |
-
class _RepeatSampler:
|
147 |
-
""" Sampler that repeats forever
|
148 |
-
|
149 |
-
Args:
|
150 |
-
sampler (Sampler)
|
151 |
-
"""
|
152 |
-
|
153 |
-
def __init__(self, sampler):
|
154 |
-
self.sampler = sampler
|
155 |
-
|
156 |
-
def __iter__(self):
|
157 |
-
while True:
|
158 |
-
yield from iter(self.sampler)
|
159 |
-
|
160 |
-
|
161 |
-
class LoadImages:
|
162 |
-
# YOLOv5 image/video dataloader, i.e. `python detect.py --source image.jpg/vid.mp4`
|
163 |
-
def __init__(self, path, img_size=640, stride=32, auto=True):
|
164 |
-
p = str(Path(path).resolve()) # os-agnostic absolute path
|
165 |
-
if '*' in p:
|
166 |
-
files = sorted(glob.glob(p, recursive=True)) # glob
|
167 |
-
elif os.path.isdir(p):
|
168 |
-
files = sorted(glob.glob(os.path.join(p, '*.*'))) # dir
|
169 |
-
elif os.path.isfile(p):
|
170 |
-
files = [p] # files
|
171 |
-
else:
|
172 |
-
raise Exception(f'ERROR: {p} does not exist')
|
173 |
-
|
174 |
-
images = [x for x in files if x.split('.')[-1].lower() in IMG_FORMATS]
|
175 |
-
videos = [x for x in files if x.split('.')[-1].lower() in VID_FORMATS]
|
176 |
-
ni, nv = len(images), len(videos)
|
177 |
-
|
178 |
-
self.img_size = img_size
|
179 |
-
self.stride = stride
|
180 |
-
self.files = images + videos
|
181 |
-
self.nf = ni + nv # number of files
|
182 |
-
self.video_flag = [False] * ni + [True] * nv
|
183 |
-
self.mode = 'image'
|
184 |
-
self.auto = auto
|
185 |
-
if any(videos):
|
186 |
-
self.new_video(videos[0]) # new video
|
187 |
-
else:
|
188 |
-
self.cap = None
|
189 |
-
assert self.nf > 0, f'No images or videos found in {p}. ' \
|
190 |
-
f'Supported formats are:\nimages: {IMG_FORMATS}\nvideos: {VID_FORMATS}'
|
191 |
-
|
192 |
-
def __iter__(self):
|
193 |
-
self.count = 0
|
194 |
-
return self
|
195 |
-
|
196 |
-
def __next__(self):
|
197 |
-
if self.count == self.nf:
|
198 |
-
raise StopIteration
|
199 |
-
path = self.files[self.count]
|
200 |
-
|
201 |
-
if self.video_flag[self.count]:
|
202 |
-
# Read video
|
203 |
-
self.mode = 'video'
|
204 |
-
ret_val, img0 = self.cap.read()
|
205 |
-
while not ret_val:
|
206 |
-
self.count += 1
|
207 |
-
self.cap.release()
|
208 |
-
if self.count == self.nf: # last video
|
209 |
-
raise StopIteration
|
210 |
-
else:
|
211 |
-
path = self.files[self.count]
|
212 |
-
self.new_video(path)
|
213 |
-
ret_val, img0 = self.cap.read()
|
214 |
-
|
215 |
-
self.frame += 1
|
216 |
-
s = f'video {self.count + 1}/{self.nf} ({self.frame}/{self.frames}) {path}: '
|
217 |
-
|
218 |
-
else:
|
219 |
-
# Read image
|
220 |
-
self.count += 1
|
221 |
-
img0 = cv2.imread(path) # BGR
|
222 |
-
assert img0 is not None, f'Image Not Found {path}'
|
223 |
-
s = f'image {self.count}/{self.nf} {path}: '
|
224 |
-
|
225 |
-
# Padded resize
|
226 |
-
img = letterbox(img0, self.img_size, stride=self.stride, auto=self.auto)[0]
|
227 |
-
|
228 |
-
# Convert
|
229 |
-
img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
|
230 |
-
img = np.ascontiguousarray(img)
|
231 |
-
|
232 |
-
return path, img, img0, self.cap, s
|
233 |
-
|
234 |
-
def new_video(self, path):
|
235 |
-
self.frame = 0
|
236 |
-
self.cap = cv2.VideoCapture(path)
|
237 |
-
self.frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
238 |
-
|
239 |
-
def __len__(self):
|
240 |
-
return self.nf # number of files
|
241 |
-
|
242 |
-
|
243 |
-
class LoadWebcam: # for inference
|
244 |
-
# YOLOv5 local webcam dataloader, i.e. `python detect.py --source 0`
|
245 |
-
def __init__(self, pipe='0', img_size=640, stride=32):
|
246 |
-
self.img_size = img_size
|
247 |
-
self.stride = stride
|
248 |
-
self.pipe = eval(pipe) if pipe.isnumeric() else pipe
|
249 |
-
self.cap = cv2.VideoCapture(self.pipe) # video capture object
|
250 |
-
self.cap.set(cv2.CAP_PROP_BUFFERSIZE, 3) # set buffer size
|
251 |
-
|
252 |
-
def __iter__(self):
|
253 |
-
self.count = -1
|
254 |
-
return self
|
255 |
-
|
256 |
-
def __next__(self):
|
257 |
-
self.count += 1
|
258 |
-
if cv2.waitKey(1) == ord('q'): # q to quit
|
259 |
-
self.cap.release()
|
260 |
-
cv2.destroyAllWindows()
|
261 |
-
raise StopIteration
|
262 |
-
|
263 |
-
# Read frame
|
264 |
-
ret_val, img0 = self.cap.read()
|
265 |
-
img0 = cv2.flip(img0, 1) # flip left-right
|
266 |
-
|
267 |
-
# Print
|
268 |
-
assert ret_val, f'Camera Error {self.pipe}'
|
269 |
-
img_path = 'webcam.jpg'
|
270 |
-
s = f'webcam {self.count}: '
|
271 |
-
|
272 |
-
# Padded resize
|
273 |
-
img = letterbox(img0, self.img_size, stride=self.stride)[0]
|
274 |
-
|
275 |
-
# Convert
|
276 |
-
img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
|
277 |
-
img = np.ascontiguousarray(img)
|
278 |
-
|
279 |
-
return img_path, img, img0, None, s
|
280 |
-
|
281 |
-
def __len__(self):
|
282 |
-
return 0
|
283 |
-
|
284 |
-
|
285 |
-
class LoadStreams:
|
286 |
-
# YOLOv5 streamloader, i.e. `python detect.py --source 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP streams`
|
287 |
-
def __init__(self, sources='streams.txt', img_size=640, stride=32, auto=True):
|
288 |
-
self.mode = 'stream'
|
289 |
-
self.img_size = img_size
|
290 |
-
self.stride = stride
|
291 |
-
|
292 |
-
if os.path.isfile(sources):
|
293 |
-
with open(sources) as f:
|
294 |
-
sources = [x.strip() for x in f.read().strip().splitlines() if len(x.strip())]
|
295 |
-
else:
|
296 |
-
sources = [sources]
|
297 |
-
|
298 |
-
n = len(sources)
|
299 |
-
self.imgs, self.fps, self.frames, self.threads = [None] * n, [0] * n, [0] * n, [None] * n
|
300 |
-
self.sources = [clean_str(x) for x in sources] # clean source names for later
|
301 |
-
self.auto = auto
|
302 |
-
for i, s in enumerate(sources): # index, source
|
303 |
-
# Start thread to read frames from video stream
|
304 |
-
st = f'{i + 1}/{n}: {s}... '
|
305 |
-
if urlparse(s).hostname in ('youtube.com', 'youtu.be'): # if source is YouTube video
|
306 |
-
check_requirements(('pafy', 'youtube_dl==2020.12.2'))
|
307 |
-
import pafy
|
308 |
-
s = pafy.new(s).getbest(preftype="mp4").url # YouTube URL
|
309 |
-
s = eval(s) if s.isnumeric() else s # i.e. s = '0' local webcam
|
310 |
-
cap = cv2.VideoCapture(s)
|
311 |
-
assert cap.isOpened(), f'{st}Failed to open {s}'
|
312 |
-
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
313 |
-
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
314 |
-
fps = cap.get(cv2.CAP_PROP_FPS) # warning: may return 0 or nan
|
315 |
-
self.frames[i] = max(int(cap.get(cv2.CAP_PROP_FRAME_COUNT)), 0) or float('inf') # infinite stream fallback
|
316 |
-
self.fps[i] = max((fps if math.isfinite(fps) else 0) % 100, 0) or 30 # 30 FPS fallback
|
317 |
-
|
318 |
-
_, self.imgs[i] = cap.read() # guarantee first frame
|
319 |
-
self.threads[i] = Thread(target=self.update, args=([i, cap, s]), daemon=True)
|
320 |
-
LOGGER.info(f"{st} Success ({self.frames[i]} frames {w}x{h} at {self.fps[i]:.2f} FPS)")
|
321 |
-
self.threads[i].start()
|
322 |
-
LOGGER.info('') # newline
|
323 |
-
|
324 |
-
# check for common shapes
|
325 |
-
s = np.stack([letterbox(x, self.img_size, stride=self.stride, auto=self.auto)[0].shape for x in self.imgs])
|
326 |
-
self.rect = np.unique(s, axis=0).shape[0] == 1 # rect inference if all shapes equal
|
327 |
-
if not self.rect:
|
328 |
-
LOGGER.warning('WARNING: Stream shapes differ. For optimal performance supply similarly-shaped streams.')
|
329 |
-
|
330 |
-
def update(self, i, cap, stream):
|
331 |
-
# Read stream `i` frames in daemon thread
|
332 |
-
n, f, read = 0, self.frames[i], 1 # frame number, frame array, inference every 'read' frame
|
333 |
-
while cap.isOpened() and n < f:
|
334 |
-
n += 1
|
335 |
-
# _, self.imgs[index] = cap.read()
|
336 |
-
cap.grab()
|
337 |
-
if n % read == 0:
|
338 |
-
success, im = cap.retrieve()
|
339 |
-
if success:
|
340 |
-
self.imgs[i] = im
|
341 |
-
else:
|
342 |
-
LOGGER.warning('WARNING: Video stream unresponsive, please check your IP camera connection.')
|
343 |
-
self.imgs[i] = np.zeros_like(self.imgs[i])
|
344 |
-
cap.open(stream) # re-open stream if signal was lost
|
345 |
-
time.sleep(1 / self.fps[i]) # wait time
|
346 |
-
|
347 |
-
def __iter__(self):
|
348 |
-
self.count = -1
|
349 |
-
return self
|
350 |
-
|
351 |
-
def __next__(self):
|
352 |
-
self.count += 1
|
353 |
-
if not all(x.is_alive() for x in self.threads) or cv2.waitKey(1) == ord('q'): # q to quit
|
354 |
-
cv2.destroyAllWindows()
|
355 |
-
raise StopIteration
|
356 |
-
|
357 |
-
# Letterbox
|
358 |
-
img0 = self.imgs.copy()
|
359 |
-
img = [letterbox(x, self.img_size, stride=self.stride, auto=self.rect and self.auto)[0] for x in img0]
|
360 |
-
|
361 |
-
# Stack
|
362 |
-
img = np.stack(img, 0)
|
363 |
-
|
364 |
-
# Convert
|
365 |
-
img = img[..., ::-1].transpose((0, 3, 1, 2)) # BGR to RGB, BHWC to BCHW
|
366 |
-
img = np.ascontiguousarray(img)
|
367 |
-
|
368 |
-
return self.sources, img, img0, None, ''
|
369 |
-
|
370 |
-
def __len__(self):
|
371 |
-
return len(self.sources) # 1E12 frames = 32 streams at 30 FPS for 30 years
|
372 |
-
|
373 |
-
|
374 |
-
def img2label_paths(img_paths):
|
375 |
-
# Define label paths as a function of image paths
|
376 |
-
sa, sb = os.sep + 'images' + os.sep, os.sep + 'labels' + os.sep # /images/, /labels/ substrings
|
377 |
-
return [sb.join(x.rsplit(sa, 1)).rsplit('.', 1)[0] + '.txt' for x in img_paths]
|
378 |
-
|
379 |
-
|
380 |
-
class LoadImagesAndLabels(Dataset):
|
381 |
-
# YOLOv5 train_loader/val_loader, loads images and labels for training and validation
|
382 |
-
cache_version = 0.6 # dataset labels *.cache version
|
383 |
-
|
384 |
-
def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
|
385 |
-
cache_images=False, single_cls=False, stride=32, pad=0.0, prefix=''):
|
386 |
-
self.img_size = img_size
|
387 |
-
self.augment = augment
|
388 |
-
self.hyp = hyp
|
389 |
-
self.image_weights = image_weights
|
390 |
-
self.rect = False if image_weights else rect
|
391 |
-
self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training)
|
392 |
-
self.mosaic_border = [-img_size // 2, -img_size // 2]
|
393 |
-
self.stride = stride
|
394 |
-
self.path = path
|
395 |
-
self.albumentations = Albumentations() if augment else None
|
396 |
-
|
397 |
-
try:
|
398 |
-
f = [] # image files
|
399 |
-
for p in path if isinstance(path, list) else [path]:
|
400 |
-
p = Path(p) # os-agnostic
|
401 |
-
if p.is_dir(): # dir
|
402 |
-
f += glob.glob(str(p / '**' / '*.*'), recursive=True)
|
403 |
-
# f = list(p.rglob('*.*')) # pathlib
|
404 |
-
elif p.is_file(): # file
|
405 |
-
with open(p) as t:
|
406 |
-
t = t.read().strip().splitlines()
|
407 |
-
parent = str(p.parent) + os.sep
|
408 |
-
f += [x.replace('./', parent) if x.startswith('./') else x for x in t] # local to global path
|
409 |
-
# f += [p.parent / x.lstrip(os.sep) for x in t] # local to global path (pathlib)
|
410 |
-
else:
|
411 |
-
raise Exception(f'{prefix}{p} does not exist')
|
412 |
-
self.im_files = sorted(x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in IMG_FORMATS)
|
413 |
-
# self.img_files = sorted([x for x in f if x.suffix[1:].lower() in IMG_FORMATS]) # pathlib
|
414 |
-
assert self.im_files, f'{prefix}No images found'
|
415 |
-
except Exception as e:
|
416 |
-
raise Exception(f'{prefix}Error loading data from {path}: {e}\nSee {HELP_URL}')
|
417 |
-
|
418 |
-
# Check cache
|
419 |
-
self.label_files = img2label_paths(self.im_files) # labels
|
420 |
-
cache_path = (p if p.is_file() else Path(self.label_files[0]).parent).with_suffix('.cache')
|
421 |
-
try:
|
422 |
-
cache, exists = np.load(cache_path, allow_pickle=True).item(), True # load dict
|
423 |
-
assert cache['version'] == self.cache_version # same version
|
424 |
-
assert cache['hash'] == get_hash(self.label_files + self.im_files) # same hash
|
425 |
-
except Exception:
|
426 |
-
cache, exists = self.cache_labels(cache_path, prefix), False # cache
|
427 |
-
|
428 |
-
# Display cache
|
429 |
-
nf, nm, ne, nc, n = cache.pop('results') # found, missing, empty, corrupt, total
|
430 |
-
if exists:
|
431 |
-
d = f"Scanning '{cache_path}' images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupt"
|
432 |
-
tqdm(None, desc=prefix + d, total=n, initial=n, bar_format=BAR_FORMAT) # display cache results
|
433 |
-
if cache['msgs']:
|
434 |
-
LOGGER.info('\n'.join(cache['msgs'])) # display warnings
|
435 |
-
assert nf > 0 or not augment, f'{prefix}No labels in {cache_path}. Can not train without labels. See {HELP_URL}'
|
436 |
-
|
437 |
-
# Read cache
|
438 |
-
[cache.pop(k) for k in ('hash', 'version', 'msgs')] # remove items
|
439 |
-
labels, shapes, self.segments = zip(*cache.values())
|
440 |
-
self.labels = list(labels)
|
441 |
-
self.shapes = np.array(shapes, dtype=np.float64)
|
442 |
-
self.im_files = list(cache.keys()) # update
|
443 |
-
self.label_files = img2label_paths(cache.keys()) # update
|
444 |
-
n = len(shapes) # number of images
|
445 |
-
bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index
|
446 |
-
nb = bi[-1] + 1 # number of batches
|
447 |
-
self.batch = bi # batch index of image
|
448 |
-
self.n = n
|
449 |
-
self.indices = range(n)
|
450 |
-
|
451 |
-
# Update labels
|
452 |
-
include_class = [] # filter labels to include only these classes (optional)
|
453 |
-
include_class_array = np.array(include_class).reshape(1, -1)
|
454 |
-
for i, (label, segment) in enumerate(zip(self.labels, self.segments)):
|
455 |
-
if include_class:
|
456 |
-
j = (label[:, 0:1] == include_class_array).any(1)
|
457 |
-
self.labels[i] = label[j]
|
458 |
-
if segment:
|
459 |
-
self.segments[i] = segment[j]
|
460 |
-
if single_cls: # single-class training, merge all classes into 0
|
461 |
-
self.labels[i][:, 0] = 0
|
462 |
-
if segment:
|
463 |
-
self.segments[i][:, 0] = 0
|
464 |
-
|
465 |
-
# Rectangular Training
|
466 |
-
if self.rect:
|
467 |
-
# Sort by aspect ratio
|
468 |
-
s = self.shapes # wh
|
469 |
-
ar = s[:, 1] / s[:, 0] # aspect ratio
|
470 |
-
irect = ar.argsort()
|
471 |
-
self.im_files = [self.im_files[i] for i in irect]
|
472 |
-
self.label_files = [self.label_files[i] for i in irect]
|
473 |
-
self.labels = [self.labels[i] for i in irect]
|
474 |
-
self.shapes = s[irect] # wh
|
475 |
-
ar = ar[irect]
|
476 |
-
|
477 |
-
# Set training image shapes
|
478 |
-
shapes = [[1, 1]] * nb
|
479 |
-
for i in range(nb):
|
480 |
-
ari = ar[bi == i]
|
481 |
-
mini, maxi = ari.min(), ari.max()
|
482 |
-
if maxi < 1:
|
483 |
-
shapes[i] = [maxi, 1]
|
484 |
-
elif mini > 1:
|
485 |
-
shapes[i] = [1, 1 / mini]
|
486 |
-
|
487 |
-
self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride
|
488 |
-
|
489 |
-
# Cache images into RAM/disk for faster training (WARNING: large datasets may exceed system resources)
|
490 |
-
self.ims = [None] * n
|
491 |
-
self.npy_files = [Path(f).with_suffix('.npy') for f in self.im_files]
|
492 |
-
if cache_images:
|
493 |
-
gb = 0 # Gigabytes of cached images
|
494 |
-
self.im_hw0, self.im_hw = [None] * n, [None] * n
|
495 |
-
fcn = self.cache_images_to_disk if cache_images == 'disk' else self.load_image
|
496 |
-
results = ThreadPool(NUM_THREADS).imap(fcn, range(n))
|
497 |
-
pbar = tqdm(enumerate(results), total=n, bar_format=BAR_FORMAT)
|
498 |
-
for i, x in pbar:
|
499 |
-
if cache_images == 'disk':
|
500 |
-
gb += self.npy_files[i].stat().st_size
|
501 |
-
else: # 'ram'
|
502 |
-
self.ims[i], self.im_hw0[i], self.im_hw[i] = x # im, hw_orig, hw_resized = load_image(self, i)
|
503 |
-
gb += self.ims[i].nbytes
|
504 |
-
pbar.desc = f'{prefix}Caching images ({gb / 1E9:.1f}GB {cache_images})'
|
505 |
-
pbar.close()
|
506 |
-
|
507 |
-
def cache_labels(self, path=Path('./labels.cache'), prefix=''):
|
508 |
-
# Cache dataset labels, check images and read shapes
|
509 |
-
x = {} # dict
|
510 |
-
nm, nf, ne, nc, msgs = 0, 0, 0, 0, [] # number missing, found, empty, corrupt, messages
|
511 |
-
desc = f"{prefix}Scanning '{path.parent / path.stem}' images and labels..."
|
512 |
-
with Pool(NUM_THREADS) as pool:
|
513 |
-
pbar = tqdm(pool.imap(verify_image_label, zip(self.im_files, self.label_files, repeat(prefix))),
|
514 |
-
desc=desc, total=len(self.im_files), bar_format=BAR_FORMAT)
|
515 |
-
for im_file, lb, shape, segments, nm_f, nf_f, ne_f, nc_f, msg in pbar:
|
516 |
-
nm += nm_f
|
517 |
-
nf += nf_f
|
518 |
-
ne += ne_f
|
519 |
-
nc += nc_f
|
520 |
-
if im_file:
|
521 |
-
x[im_file] = [lb, shape, segments]
|
522 |
-
if msg:
|
523 |
-
msgs.append(msg)
|
524 |
-
pbar.desc = f"{desc}{nf} found, {nm} missing, {ne} empty, {nc} corrupt"
|
525 |
-
|
526 |
-
pbar.close()
|
527 |
-
if msgs:
|
528 |
-
LOGGER.info('\n'.join(msgs))
|
529 |
-
if nf == 0:
|
530 |
-
LOGGER.warning(f'{prefix}WARNING: No labels found in {path}. See {HELP_URL}')
|
531 |
-
x['hash'] = get_hash(self.label_files + self.im_files)
|
532 |
-
x['results'] = nf, nm, ne, nc, len(self.im_files)
|
533 |
-
x['msgs'] = msgs # warnings
|
534 |
-
x['version'] = self.cache_version # cache version
|
535 |
-
try:
|
536 |
-
np.save(path, x) # save cache for next time
|
537 |
-
path.with_suffix('.cache.npy').rename(path) # remove .npy suffix
|
538 |
-
LOGGER.info(f'{prefix}New cache created: {path}')
|
539 |
-
except Exception as e:
|
540 |
-
LOGGER.warning(f'{prefix}WARNING: Cache directory {path.parent} is not writeable: {e}') # not writeable
|
541 |
-
return x
|
542 |
-
|
543 |
-
def __len__(self):
|
544 |
-
return len(self.im_files)
|
545 |
-
|
546 |
-
# def __iter__(self):
|
547 |
-
# self.count = -1
|
548 |
-
# print('ran dataset iter')
|
549 |
-
# #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
|
550 |
-
# return self
|
551 |
-
|
552 |
-
def __getitem__(self, index):
|
553 |
-
index = self.indices[index] # linear, shuffled, or image_weights
|
554 |
-
|
555 |
-
hyp = self.hyp
|
556 |
-
mosaic = self.mosaic and random.random() < hyp['mosaic']
|
557 |
-
if mosaic:
|
558 |
-
# Load mosaic
|
559 |
-
img, labels = self.load_mosaic(index)
|
560 |
-
shapes = None
|
561 |
-
|
562 |
-
# MixUp augmentation
|
563 |
-
if random.random() < hyp['mixup']:
|
564 |
-
img, labels = mixup(img, labels, *self.load_mosaic(random.randint(0, self.n - 1)))
|
565 |
-
|
566 |
-
else:
|
567 |
-
# Load image
|
568 |
-
img, (h0, w0), (h, w) = self.load_image(index)
|
569 |
-
|
570 |
-
# Letterbox
|
571 |
-
shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape
|
572 |
-
img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
|
573 |
-
shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
|
574 |
-
|
575 |
-
labels = self.labels[index].copy()
|
576 |
-
if labels.size: # normalized xywh to pixel xyxy format
|
577 |
-
labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1])
|
578 |
-
|
579 |
-
if self.augment:
|
580 |
-
img, labels = random_perspective(img, labels,
|
581 |
-
degrees=hyp['degrees'],
|
582 |
-
translate=hyp['translate'],
|
583 |
-
scale=hyp['scale'],
|
584 |
-
shear=hyp['shear'],
|
585 |
-
perspective=hyp['perspective'])
|
586 |
-
|
587 |
-
nl = len(labels) # number of labels
|
588 |
-
if nl:
|
589 |
-
labels[:, 1:5] = xyxy2xywhn(labels[:, 1:5], w=img.shape[1], h=img.shape[0], clip=True, eps=1E-3)
|
590 |
-
|
591 |
-
if self.augment:
|
592 |
-
# Albumentations
|
593 |
-
img, labels = self.albumentations(img, labels)
|
594 |
-
nl = len(labels) # update after albumentations
|
595 |
-
|
596 |
-
# HSV color-space
|
597 |
-
augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])
|
598 |
-
|
599 |
-
# Flip up-down
|
600 |
-
if random.random() < hyp['flipud']:
|
601 |
-
img = np.flipud(img)
|
602 |
-
if nl:
|
603 |
-
labels[:, 2] = 1 - labels[:, 2]
|
604 |
-
|
605 |
-
# Flip left-right
|
606 |
-
if random.random() < hyp['fliplr']:
|
607 |
-
img = np.fliplr(img)
|
608 |
-
if nl:
|
609 |
-
labels[:, 1] = 1 - labels[:, 1]
|
610 |
-
|
611 |
-
# Cutouts
|
612 |
-
# labels = cutout(img, labels, p=0.5)
|
613 |
-
# nl = len(labels) # update after cutout
|
614 |
-
|
615 |
-
labels_out = torch.zeros((nl, 6))
|
616 |
-
if nl:
|
617 |
-
labels_out[:, 1:] = torch.from_numpy(labels)
|
618 |
-
|
619 |
-
# Convert
|
620 |
-
img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
|
621 |
-
img = np.ascontiguousarray(img)
|
622 |
-
|
623 |
-
return torch.from_numpy(img), labels_out, self.im_files[index], shapes
|
624 |
-
|
625 |
-
def load_image(self, i):
|
626 |
-
# Loads 1 image from dataset index 'i', returns (im, original hw, resized hw)
|
627 |
-
im, f, fn = self.ims[i], self.im_files[i], self.npy_files[i],
|
628 |
-
if im is None: # not cached in RAM
|
629 |
-
if fn.exists(): # load npy
|
630 |
-
im = np.load(fn)
|
631 |
-
else: # read image
|
632 |
-
im = cv2.imread(f) # BGR
|
633 |
-
assert im is not None, f'Image Not Found {f}'
|
634 |
-
h0, w0 = im.shape[:2] # orig hw
|
635 |
-
r = self.img_size / max(h0, w0) # ratio
|
636 |
-
if r != 1: # if sizes are not equal
|
637 |
-
im = cv2.resize(im,
|
638 |
-
(int(w0 * r), int(h0 * r)),
|
639 |
-
interpolation=cv2.INTER_LINEAR if (self.augment or r > 1) else cv2.INTER_AREA)
|
640 |
-
return im, (h0, w0), im.shape[:2] # im, hw_original, hw_resized
|
641 |
-
else:
|
642 |
-
return self.ims[i], self.im_hw0[i], self.im_hw[i] # im, hw_original, hw_resized
|
643 |
-
|
644 |
-
def cache_images_to_disk(self, i):
|
645 |
-
# Saves an image as an *.npy file for faster loading
|
646 |
-
f = self.npy_files[i]
|
647 |
-
if not f.exists():
|
648 |
-
np.save(f.as_posix(), cv2.imread(self.im_files[i]))
|
649 |
-
|
650 |
-
def load_mosaic(self, index):
|
651 |
-
# YOLOv5 4-mosaic loader. Loads 1 image + 3 random images into a 4-image mosaic
|
652 |
-
labels4, segments4 = [], []
|
653 |
-
s = self.img_size
|
654 |
-
yc, xc = (int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border) # mosaic center x, y
|
655 |
-
indices = [index] + random.choices(self.indices, k=3) # 3 additional image indices
|
656 |
-
random.shuffle(indices)
|
657 |
-
for i, index in enumerate(indices):
|
658 |
-
# Load image
|
659 |
-
img, _, (h, w) = self.load_image(index)
|
660 |
-
|
661 |
-
# place img in img4
|
662 |
-
if i == 0: # top left
|
663 |
-
img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
|
664 |
-
x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
|
665 |
-
x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
|
666 |
-
elif i == 1: # top right
|
667 |
-
x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
|
668 |
-
x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
|
669 |
-
elif i == 2: # bottom left
|
670 |
-
x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
|
671 |
-
x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
|
672 |
-
elif i == 3: # bottom right
|
673 |
-
x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
|
674 |
-
x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
|
675 |
-
|
676 |
-
img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
|
677 |
-
padw = x1a - x1b
|
678 |
-
padh = y1a - y1b
|
679 |
-
|
680 |
-
# Labels
|
681 |
-
labels, segments = self.labels[index].copy(), self.segments[index].copy()
|
682 |
-
if labels.size:
|
683 |
-
labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh) # normalized xywh to pixel xyxy format
|
684 |
-
segments = [xyn2xy(x, w, h, padw, padh) for x in segments]
|
685 |
-
labels4.append(labels)
|
686 |
-
segments4.extend(segments)
|
687 |
-
|
688 |
-
# Concat/clip labels
|
689 |
-
labels4 = np.concatenate(labels4, 0)
|
690 |
-
for x in (labels4[:, 1:], *segments4):
|
691 |
-
np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
|
692 |
-
# img4, labels4 = replicate(img4, labels4) # replicate
|
693 |
-
|
694 |
-
# Augment
|
695 |
-
img4, labels4, segments4 = copy_paste(img4, labels4, segments4, p=self.hyp['copy_paste'])
|
696 |
-
img4, labels4 = random_perspective(img4, labels4, segments4,
|
697 |
-
degrees=self.hyp['degrees'],
|
698 |
-
translate=self.hyp['translate'],
|
699 |
-
scale=self.hyp['scale'],
|
700 |
-
shear=self.hyp['shear'],
|
701 |
-
perspective=self.hyp['perspective'],
|
702 |
-
border=self.mosaic_border) # border to remove
|
703 |
-
|
704 |
-
return img4, labels4
|
705 |
-
|
706 |
-
def load_mosaic9(self, index):
|
707 |
-
# YOLOv5 9-mosaic loader. Loads 1 image + 8 random images into a 9-image mosaic
|
708 |
-
labels9, segments9 = [], []
|
709 |
-
s = self.img_size
|
710 |
-
indices = [index] + random.choices(self.indices, k=8) # 8 additional image indices
|
711 |
-
random.shuffle(indices)
|
712 |
-
hp, wp = -1, -1 # height, width previous
|
713 |
-
for i, index in enumerate(indices):
|
714 |
-
# Load image
|
715 |
-
img, _, (h, w) = self.load_image(index)
|
716 |
-
|
717 |
-
# place img in img9
|
718 |
-
if i == 0: # center
|
719 |
-
img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
|
720 |
-
h0, w0 = h, w
|
721 |
-
c = s, s, s + w, s + h # xmin, ymin, xmax, ymax (base) coordinates
|
722 |
-
elif i == 1: # top
|
723 |
-
c = s, s - h, s + w, s
|
724 |
-
elif i == 2: # top right
|
725 |
-
c = s + wp, s - h, s + wp + w, s
|
726 |
-
elif i == 3: # right
|
727 |
-
c = s + w0, s, s + w0 + w, s + h
|
728 |
-
elif i == 4: # bottom right
|
729 |
-
c = s + w0, s + hp, s + w0 + w, s + hp + h
|
730 |
-
elif i == 5: # bottom
|
731 |
-
c = s + w0 - w, s + h0, s + w0, s + h0 + h
|
732 |
-
elif i == 6: # bottom left
|
733 |
-
c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h
|
734 |
-
elif i == 7: # left
|
735 |
-
c = s - w, s + h0 - h, s, s + h0
|
736 |
-
elif i == 8: # top left
|
737 |
-
c = s - w, s + h0 - hp - h, s, s + h0 - hp
|
738 |
-
|
739 |
-
padx, pady = c[:2]
|
740 |
-
x1, y1, x2, y2 = (max(x, 0) for x in c) # allocate coords
|
741 |
-
|
742 |
-
# Labels
|
743 |
-
labels, segments = self.labels[index].copy(), self.segments[index].copy()
|
744 |
-
if labels.size:
|
745 |
-
labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padx, pady) # normalized xywh to pixel xyxy format
|
746 |
-
segments = [xyn2xy(x, w, h, padx, pady) for x in segments]
|
747 |
-
labels9.append(labels)
|
748 |
-
segments9.extend(segments)
|
749 |
-
|
750 |
-
# Image
|
751 |
-
img9[y1:y2, x1:x2] = img[y1 - pady:, x1 - padx:] # img9[ymin:ymax, xmin:xmax]
|
752 |
-
hp, wp = h, w # height, width previous
|
753 |
-
|
754 |
-
# Offset
|
755 |
-
yc, xc = (int(random.uniform(0, s)) for _ in self.mosaic_border) # mosaic center x, y
|
756 |
-
img9 = img9[yc:yc + 2 * s, xc:xc + 2 * s]
|
757 |
-
|
758 |
-
# Concat/clip labels
|
759 |
-
labels9 = np.concatenate(labels9, 0)
|
760 |
-
labels9[:, [1, 3]] -= xc
|
761 |
-
labels9[:, [2, 4]] -= yc
|
762 |
-
c = np.array([xc, yc]) # centers
|
763 |
-
segments9 = [x - c for x in segments9]
|
764 |
-
|
765 |
-
for x in (labels9[:, 1:], *segments9):
|
766 |
-
np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
|
767 |
-
# img9, labels9 = replicate(img9, labels9) # replicate
|
768 |
-
|
769 |
-
# Augment
|
770 |
-
img9, labels9 = random_perspective(img9, labels9, segments9,
|
771 |
-
degrees=self.hyp['degrees'],
|
772 |
-
translate=self.hyp['translate'],
|
773 |
-
scale=self.hyp['scale'],
|
774 |
-
shear=self.hyp['shear'],
|
775 |
-
perspective=self.hyp['perspective'],
|
776 |
-
border=self.mosaic_border) # border to remove
|
777 |
-
|
778 |
-
return img9, labels9
|
779 |
-
|
780 |
-
@staticmethod
|
781 |
-
def collate_fn(batch):
|
782 |
-
im, label, path, shapes = zip(*batch) # transposed
|
783 |
-
for i, lb in enumerate(label):
|
784 |
-
lb[:, 0] = i # add target image index for build_targets()
|
785 |
-
return torch.stack(im, 0), torch.cat(label, 0), path, shapes
|
786 |
-
|
787 |
-
@staticmethod
|
788 |
-
def collate_fn4(batch):
|
789 |
-
img, label, path, shapes = zip(*batch) # transposed
|
790 |
-
n = len(shapes) // 4
|
791 |
-
im4, label4, path4, shapes4 = [], [], path[:n], shapes[:n]
|
792 |
-
|
793 |
-
ho = torch.tensor([[0.0, 0, 0, 1, 0, 0]])
|
794 |
-
wo = torch.tensor([[0.0, 0, 1, 0, 0, 0]])
|
795 |
-
s = torch.tensor([[1, 1, 0.5, 0.5, 0.5, 0.5]]) # scale
|
796 |
-
for i in range(n): # zidane torch.zeros(16,3,720,1280) # BCHW
|
797 |
-
i *= 4
|
798 |
-
if random.random() < 0.5:
|
799 |
-
im = F.interpolate(img[i].unsqueeze(0).float(), scale_factor=2.0, mode='bilinear', align_corners=False)[
|
800 |
-
0].type(img[i].type())
|
801 |
-
lb = label[i]
|
802 |
-
else:
|
803 |
-
im = torch.cat((torch.cat((img[i], img[i + 1]), 1), torch.cat((img[i + 2], img[i + 3]), 1)), 2)
|
804 |
-
lb = torch.cat((label[i], label[i + 1] + ho, label[i + 2] + wo, label[i + 3] + ho + wo), 0) * s
|
805 |
-
im4.append(im)
|
806 |
-
label4.append(lb)
|
807 |
-
|
808 |
-
for i, lb in enumerate(label4):
|
809 |
-
lb[:, 0] = i # add target image index for build_targets()
|
810 |
-
|
811 |
-
return torch.stack(im4, 0), torch.cat(label4, 0), path4, shapes4
|
812 |
-
|
813 |
-
|
814 |
-
# Ancillary functions --------------------------------------------------------------------------------------------------
|
815 |
-
def create_folder(path='./new'):
|
816 |
-
# Create folder
|
817 |
-
if os.path.exists(path):
|
818 |
-
shutil.rmtree(path) # delete output folder
|
819 |
-
os.makedirs(path) # make new output folder
|
820 |
-
|
821 |
-
|
822 |
-
def flatten_recursive(path=DATASETS_DIR / 'coco128'):
|
823 |
-
# Flatten a recursive directory by bringing all files to top level
|
824 |
-
new_path = Path(str(path) + '_flat')
|
825 |
-
create_folder(new_path)
|
826 |
-
for file in tqdm(glob.glob(str(Path(path)) + '/**/*.*', recursive=True)):
|
827 |
-
shutil.copyfile(file, new_path / Path(file).name)
|
828 |
-
|
829 |
-
|
830 |
-
def extract_boxes(path=DATASETS_DIR / 'coco128'): # from utils.datasets import *; extract_boxes()
|
831 |
-
# Convert detection dataset into classification dataset, with one directory per class
|
832 |
-
path = Path(path) # images dir
|
833 |
-
shutil.rmtree(path / 'classifier') if (path / 'classifier').is_dir() else None # remove existing
|
834 |
-
files = list(path.rglob('*.*'))
|
835 |
-
n = len(files) # number of files
|
836 |
-
for im_file in tqdm(files, total=n):
|
837 |
-
if im_file.suffix[1:] in IMG_FORMATS:
|
838 |
-
# image
|
839 |
-
im = cv2.imread(str(im_file))[..., ::-1] # BGR to RGB
|
840 |
-
h, w = im.shape[:2]
|
841 |
-
|
842 |
-
# labels
|
843 |
-
lb_file = Path(img2label_paths([str(im_file)])[0])
|
844 |
-
if Path(lb_file).exists():
|
845 |
-
with open(lb_file) as f:
|
846 |
-
lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) # labels
|
847 |
-
|
848 |
-
for j, x in enumerate(lb):
|
849 |
-
c = int(x[0]) # class
|
850 |
-
f = (path / 'classifier') / f'{c}' / f'{path.stem}_{im_file.stem}_{j}.jpg' # new filename
|
851 |
-
if not f.parent.is_dir():
|
852 |
-
f.parent.mkdir(parents=True)
|
853 |
-
|
854 |
-
b = x[1:] * [w, h, w, h] # box
|
855 |
-
# b[2:] = b[2:].max() # rectangle to square
|
856 |
-
b[2:] = b[2:] * 1.2 + 3 # pad
|
857 |
-
b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int)
|
858 |
-
|
859 |
-
b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image
|
860 |
-
b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
|
861 |
-
assert cv2.imwrite(str(f), im[b[1]:b[3], b[0]:b[2]]), f'box failure in {f}'
|
862 |
-
|
863 |
-
|
864 |
-
def autosplit(path=DATASETS_DIR / 'coco128/images', weights=(0.9, 0.1, 0.0), annotated_only=False):
|
865 |
-
""" Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files
|
866 |
-
Usage: from utils.datasets import *; autosplit()
|
867 |
-
Arguments
|
868 |
-
path: Path to images directory
|
869 |
-
weights: Train, val, test weights (list, tuple)
|
870 |
-
annotated_only: Only use images with an annotated txt file
|
871 |
-
"""
|
872 |
-
path = Path(path) # images dir
|
873 |
-
files = sorted(x for x in path.rglob('*.*') if x.suffix[1:].lower() in IMG_FORMATS) # image files only
|
874 |
-
n = len(files) # number of files
|
875 |
-
random.seed(0) # for reproducibility
|
876 |
-
indices = random.choices([0, 1, 2], weights=weights, k=n) # assign each image to a split
|
877 |
-
|
878 |
-
txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt'] # 3 txt files
|
879 |
-
[(path.parent / x).unlink(missing_ok=True) for x in txt] # remove existing
|
880 |
-
|
881 |
-
print(f'Autosplitting images from {path}' + ', using *.txt labeled images only' * annotated_only)
|
882 |
-
for i, img in tqdm(zip(indices, files), total=n):
|
883 |
-
if not annotated_only or Path(img2label_paths([str(img)])[0]).exists(): # check label
|
884 |
-
with open(path.parent / txt[i], 'a') as f:
|
885 |
-
f.write('./' + img.relative_to(path.parent).as_posix() + '\n') # add image to txt file
|
886 |
-
|
887 |
-
|
888 |
-
def verify_image_label(args):
|
889 |
-
# Verify one image-label pair
|
890 |
-
im_file, lb_file, prefix = args
|
891 |
-
nm, nf, ne, nc, msg, segments = 0, 0, 0, 0, '', [] # number (missing, found, empty, corrupt), message, segments
|
892 |
-
try:
|
893 |
-
# verify images
|
894 |
-
im = Image.open(im_file)
|
895 |
-
im.verify() # PIL verify
|
896 |
-
shape = exif_size(im) # image size
|
897 |
-
assert (shape[0] > 9) & (shape[1] > 9), f'image size {shape} <10 pixels'
|
898 |
-
assert im.format.lower() in IMG_FORMATS, f'invalid image format {im.format}'
|
899 |
-
if im.format.lower() in ('jpg', 'jpeg'):
|
900 |
-
with open(im_file, 'rb') as f:
|
901 |
-
f.seek(-2, 2)
|
902 |
-
if f.read() != b'\xff\xd9': # corrupt JPEG
|
903 |
-
ImageOps.exif_transpose(Image.open(im_file)).save(im_file, 'JPEG', subsampling=0, quality=100)
|
904 |
-
msg = f'{prefix}WARNING: {im_file}: corrupt JPEG restored and saved'
|
905 |
-
|
906 |
-
# verify labels
|
907 |
-
if os.path.isfile(lb_file):
|
908 |
-
nf = 1 # label found
|
909 |
-
with open(lb_file) as f:
|
910 |
-
lb = [x.split() for x in f.read().strip().splitlines() if len(x)]
|
911 |
-
if any(len(x) > 6 for x in lb): # is segment
|
912 |
-
classes = np.array([x[0] for x in lb], dtype=np.float32)
|
913 |
-
segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in lb] # (cls, xy1...)
|
914 |
-
lb = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1) # (cls, xywh)
|
915 |
-
lb = np.array(lb, dtype=np.float32)
|
916 |
-
nl = len(lb)
|
917 |
-
if nl:
|
918 |
-
assert lb.shape[1] == 5, f'labels require 5 columns, {lb.shape[1]} columns detected'
|
919 |
-
assert (lb >= 0).all(), f'negative label values {lb[lb < 0]}'
|
920 |
-
assert (lb[:, 1:] <= 1).all(), f'non-normalized or out of bounds coordinates {lb[:, 1:][lb[:, 1:] > 1]}'
|
921 |
-
_, i = np.unique(lb, axis=0, return_index=True)
|
922 |
-
if len(i) < nl: # duplicate row check
|
923 |
-
lb = lb[i] # remove duplicates
|
924 |
-
if segments:
|
925 |
-
segments = segments[i]
|
926 |
-
msg = f'{prefix}WARNING: {im_file}: {nl - len(i)} duplicate labels removed'
|
927 |
-
else:
|
928 |
-
ne = 1 # label empty
|
929 |
-
lb = np.zeros((0, 5), dtype=np.float32)
|
930 |
-
else:
|
931 |
-
nm = 1 # label missing
|
932 |
-
lb = np.zeros((0, 5), dtype=np.float32)
|
933 |
-
return im_file, lb, shape, segments, nm, nf, ne, nc, msg
|
934 |
-
except Exception as e:
|
935 |
-
nc = 1
|
936 |
-
msg = f'{prefix}WARNING: {im_file}: ignoring corrupt image/label: {e}'
|
937 |
-
return [None, None, None, None, nm, nf, ne, nc, msg]
|
938 |
-
|
939 |
-
|
940 |
-
def dataset_stats(path='coco128.yaml', autodownload=False, verbose=False, profile=False, hub=False):
|
941 |
-
""" Return dataset statistics dictionary with images and instances counts per split per class
|
942 |
-
To run in parent directory: export PYTHONPATH="$PWD/yolov5"
|
943 |
-
Usage1: from utils.datasets import *; dataset_stats('coco128.yaml', autodownload=True)
|
944 |
-
Usage2: from utils.datasets import *; dataset_stats('path/to/coco128_with_yaml.zip')
|
945 |
-
Arguments
|
946 |
-
path: Path to data.yaml or data.zip (with data.yaml inside data.zip)
|
947 |
-
autodownload: Attempt to download dataset if not found locally
|
948 |
-
verbose: Print stats dictionary
|
949 |
-
"""
|
950 |
-
|
951 |
-
def round_labels(labels):
|
952 |
-
# Update labels to integer class and 6 decimal place floats
|
953 |
-
return [[int(c), *(round(x, 4) for x in points)] for c, *points in labels]
|
954 |
-
|
955 |
-
def unzip(path):
|
956 |
-
# Unzip data.zip TODO: CONSTRAINT: path/to/abc.zip MUST unzip to 'path/to/abc/'
|
957 |
-
if str(path).endswith('.zip'): # path is data.zip
|
958 |
-
assert Path(path).is_file(), f'Error unzipping {path}, file not found'
|
959 |
-
ZipFile(path).extractall(path=path.parent) # unzip
|
960 |
-
dir = path.with_suffix('') # dataset directory == zip name
|
961 |
-
return True, str(dir), next(dir.rglob('*.yaml')) # zipped, data_dir, yaml_path
|
962 |
-
else: # path is data.yaml
|
963 |
-
return False, None, path
|
964 |
-
|
965 |
-
def hub_ops(f, max_dim=1920):
|
966 |
-
# HUB ops for 1 image 'f': resize and save at reduced quality in /dataset-hub for web/app viewing
|
967 |
-
f_new = im_dir / Path(f).name # dataset-hub image filename
|
968 |
-
try: # use PIL
|
969 |
-
im = Image.open(f)
|
970 |
-
r = max_dim / max(im.height, im.width) # ratio
|
971 |
-
if r < 1.0: # image too large
|
972 |
-
im = im.resize((int(im.width * r), int(im.height * r)))
|
973 |
-
im.save(f_new, 'JPEG', quality=75, optimize=True) # save
|
974 |
-
except Exception as e: # use OpenCV
|
975 |
-
print(f'WARNING: HUB ops PIL failure {f}: {e}')
|
976 |
-
im = cv2.imread(f)
|
977 |
-
im_height, im_width = im.shape[:2]
|
978 |
-
r = max_dim / max(im_height, im_width) # ratio
|
979 |
-
if r < 1.0: # image too large
|
980 |
-
im = cv2.resize(im, (int(im_width * r), int(im_height * r)), interpolation=cv2.INTER_AREA)
|
981 |
-
cv2.imwrite(str(f_new), im)
|
982 |
-
|
983 |
-
zipped, data_dir, yaml_path = unzip(Path(path))
|
984 |
-
with open(check_yaml(yaml_path), errors='ignore') as f:
|
985 |
-
data = yaml.safe_load(f) # data dict
|
986 |
-
if zipped:
|
987 |
-
data['path'] = data_dir # TODO: should this be dir.resolve()?
|
988 |
-
check_dataset(data, autodownload) # download dataset if missing
|
989 |
-
hub_dir = Path(data['path'] + ('-hub' if hub else ''))
|
990 |
-
stats = {'nc': data['nc'], 'names': data['names']} # statistics dictionary
|
991 |
-
for split in 'train', 'val', 'test':
|
992 |
-
if data.get(split) is None:
|
993 |
-
stats[split] = None # i.e. no test set
|
994 |
-
continue
|
995 |
-
x = []
|
996 |
-
dataset = LoadImagesAndLabels(data[split]) # load dataset
|
997 |
-
for label in tqdm(dataset.labels, total=dataset.n, desc='Statistics'):
|
998 |
-
x.append(np.bincount(label[:, 0].astype(int), minlength=data['nc']))
|
999 |
-
x = np.array(x) # shape(128x80)
|
1000 |
-
stats[split] = {'instance_stats': {'total': int(x.sum()), 'per_class': x.sum(0).tolist()},
|
1001 |
-
'image_stats': {'total': dataset.n, 'unlabelled': int(np.all(x == 0, 1).sum()),
|
1002 |
-
'per_class': (x > 0).sum(0).tolist()},
|
1003 |
-
'labels': [{str(Path(k).name): round_labels(v.tolist())} for k, v in
|
1004 |
-
zip(dataset.im_files, dataset.labels)]}
|
1005 |
-
|
1006 |
-
if hub:
|
1007 |
-
im_dir = hub_dir / 'images'
|
1008 |
-
im_dir.mkdir(parents=True, exist_ok=True)
|
1009 |
-
for _ in tqdm(ThreadPool(NUM_THREADS).imap(hub_ops, dataset.im_files), total=dataset.n, desc='HUB Ops'):
|
1010 |
-
pass
|
1011 |
-
|
1012 |
-
# Profile
|
1013 |
-
stats_path = hub_dir / 'stats.json'
|
1014 |
-
if profile:
|
1015 |
-
for _ in range(1):
|
1016 |
-
file = stats_path.with_suffix('.npy')
|
1017 |
-
t1 = time.time()
|
1018 |
-
np.save(file, stats)
|
1019 |
-
t2 = time.time()
|
1020 |
-
x = np.load(file, allow_pickle=True)
|
1021 |
-
print(f'stats.npy times: {time.time() - t2:.3f}s read, {t2 - t1:.3f}s write')
|
1022 |
-
|
1023 |
-
file = stats_path.with_suffix('.json')
|
1024 |
-
t1 = time.time()
|
1025 |
-
with open(file, 'w') as f:
|
1026 |
-
json.dump(stats, f) # save stats *.json
|
1027 |
-
t2 = time.time()
|
1028 |
-
with open(file) as f:
|
1029 |
-
x = json.load(f) # load hyps dict
|
1030 |
-
print(f'stats.json times: {time.time() - t2:.3f}s read, {t2 - t1:.3f}s write')
|
1031 |
-
|
1032 |
-
# Save, print and return
|
1033 |
-
if hub:
|
1034 |
-
print(f'Saving {stats_path.resolve()}...')
|
1035 |
-
with open(stats_path, 'w') as f:
|
1036 |
-
json.dump(stats, f) # save stats.json
|
1037 |
-
if verbose:
|
1038 |
-
print(json.dumps(stats, indent=2, sort_keys=False))
|
1039 |
-
return stats
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/utils/downloads.py
DELETED
@@ -1,153 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
"""
|
3 |
-
Download utils
|
4 |
-
"""
|
5 |
-
|
6 |
-
import os
|
7 |
-
import platform
|
8 |
-
import subprocess
|
9 |
-
import time
|
10 |
-
import urllib
|
11 |
-
from pathlib import Path
|
12 |
-
from zipfile import ZipFile
|
13 |
-
|
14 |
-
import requests
|
15 |
-
import torch
|
16 |
-
|
17 |
-
|
18 |
-
def gsutil_getsize(url=''):
|
19 |
-
# gs://bucket/file size https://cloud.google.com/storage/docs/gsutil/commands/du
|
20 |
-
s = subprocess.check_output(f'gsutil du {url}', shell=True).decode('utf-8')
|
21 |
-
return eval(s.split(' ')[0]) if len(s) else 0 # bytes
|
22 |
-
|
23 |
-
|
24 |
-
def safe_download(file, url, url2=None, min_bytes=1E0, error_msg=''):
|
25 |
-
# Attempts to download file from url or url2, checks and removes incomplete downloads < min_bytes
|
26 |
-
file = Path(file)
|
27 |
-
assert_msg = f"Downloaded file '{file}' does not exist or size is < min_bytes={min_bytes}"
|
28 |
-
try: # url1
|
29 |
-
print(f'Downloading {url} to {file}...')
|
30 |
-
torch.hub.download_url_to_file(url, str(file))
|
31 |
-
assert file.exists() and file.stat().st_size > min_bytes, assert_msg # check
|
32 |
-
except Exception as e: # url2
|
33 |
-
file.unlink(missing_ok=True) # remove partial downloads
|
34 |
-
print(f'ERROR: {e}\nRe-attempting {url2 or url} to {file}...')
|
35 |
-
os.system(f"curl -L '{url2 or url}' -o '{file}' --retry 3 -C -") # curl download, retry and resume on fail
|
36 |
-
finally:
|
37 |
-
if not file.exists() or file.stat().st_size < min_bytes: # check
|
38 |
-
file.unlink(missing_ok=True) # remove partial downloads
|
39 |
-
print(f"ERROR: {assert_msg}\n{error_msg}")
|
40 |
-
print('')
|
41 |
-
|
42 |
-
|
43 |
-
def attempt_download(file, repo='ultralytics/yolov5'): # from utils.downloads import *; attempt_download()
|
44 |
-
# Attempt file download if does not exist
|
45 |
-
file = Path(str(file).strip().replace("'", ''))
|
46 |
-
|
47 |
-
if not file.exists():
|
48 |
-
# URL specified
|
49 |
-
name = Path(urllib.parse.unquote(str(file))).name # decode '%2F' to '/' etc.
|
50 |
-
if str(file).startswith(('http:/', 'https:/')): # download
|
51 |
-
url = str(file).replace(':/', '://') # Pathlib turns :// -> :/
|
52 |
-
file = name.split('?')[0] # parse authentication https://url.com/file.txt?auth...
|
53 |
-
if Path(file).is_file():
|
54 |
-
print(f'Found {url} locally at {file}') # file already exists
|
55 |
-
else:
|
56 |
-
safe_download(file=file, url=url, min_bytes=1E5)
|
57 |
-
return file
|
58 |
-
|
59 |
-
# GitHub assets
|
60 |
-
file.parent.mkdir(parents=True, exist_ok=True) # make parent dir (if required)
|
61 |
-
try:
|
62 |
-
response = requests.get(f'https://api.github.com/repos/{repo}/releases/latest').json() # github api
|
63 |
-
assets = [x['name'] for x in response['assets']] # release assets, i.e. ['yolov5s.pt', 'yolov5m.pt', ...]
|
64 |
-
tag = response['tag_name'] # i.e. 'v1.0'
|
65 |
-
except Exception: # fallback plan
|
66 |
-
assets = ['yolov5n.pt', 'yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt',
|
67 |
-
'yolov5n6.pt', 'yolov5s6.pt', 'yolov5m6.pt', 'yolov5l6.pt', 'yolov5x6.pt']
|
68 |
-
try:
|
69 |
-
tag = subprocess.check_output('git tag', shell=True, stderr=subprocess.STDOUT).decode().split()[-1]
|
70 |
-
except Exception:
|
71 |
-
tag = 'v6.0' # current release
|
72 |
-
|
73 |
-
if name in assets:
|
74 |
-
safe_download(file,
|
75 |
-
url=f'https://github.com/{repo}/releases/download/{tag}/{name}',
|
76 |
-
# url2=f'https://storage.googleapis.com/{repo}/ckpt/{name}', # backup url (optional)
|
77 |
-
min_bytes=1E5,
|
78 |
-
error_msg=f'{file} missing, try downloading from https://github.com/{repo}/releases/')
|
79 |
-
|
80 |
-
return str(file)
|
81 |
-
|
82 |
-
|
83 |
-
def gdrive_download(id='16TiPfZj7htmTyhntwcZyEEAejOUxuT6m', file='tmp.zip'):
|
84 |
-
# Downloads a file from Google Drive. from yolov5.utils.downloads import *; gdrive_download()
|
85 |
-
t = time.time()
|
86 |
-
file = Path(file)
|
87 |
-
cookie = Path('cookie') # gdrive cookie
|
88 |
-
print(f'Downloading https://drive.google.com/uc?export=download&id={id} as {file}... ', end='')
|
89 |
-
file.unlink(missing_ok=True) # remove existing file
|
90 |
-
cookie.unlink(missing_ok=True) # remove existing cookie
|
91 |
-
|
92 |
-
# Attempt file download
|
93 |
-
out = "NUL" if platform.system() == "Windows" else "/dev/null"
|
94 |
-
os.system(f'curl -c ./cookie -s -L "drive.google.com/uc?export=download&id={id}" > {out}')
|
95 |
-
if os.path.exists('cookie'): # large file
|
96 |
-
s = f'curl -Lb ./cookie "drive.google.com/uc?export=download&confirm={get_token()}&id={id}" -o {file}'
|
97 |
-
else: # small file
|
98 |
-
s = f'curl -s -L -o {file} "drive.google.com/uc?export=download&id={id}"'
|
99 |
-
r = os.system(s) # execute, capture return
|
100 |
-
cookie.unlink(missing_ok=True) # remove existing cookie
|
101 |
-
|
102 |
-
# Error check
|
103 |
-
if r != 0:
|
104 |
-
file.unlink(missing_ok=True) # remove partial
|
105 |
-
print('Download error ') # raise Exception('Download error')
|
106 |
-
return r
|
107 |
-
|
108 |
-
# Unzip if archive
|
109 |
-
if file.suffix == '.zip':
|
110 |
-
print('unzipping... ', end='')
|
111 |
-
ZipFile(file).extractall(path=file.parent) # unzip
|
112 |
-
file.unlink() # remove zip
|
113 |
-
|
114 |
-
print(f'Done ({time.time() - t:.1f}s)')
|
115 |
-
return r
|
116 |
-
|
117 |
-
|
118 |
-
def get_token(cookie="./cookie"):
|
119 |
-
with open(cookie) as f:
|
120 |
-
for line in f:
|
121 |
-
if "download" in line:
|
122 |
-
return line.split()[-1]
|
123 |
-
return ""
|
124 |
-
|
125 |
-
# Google utils: https://cloud.google.com/storage/docs/reference/libraries ----------------------------------------------
|
126 |
-
#
|
127 |
-
#
|
128 |
-
# def upload_blob(bucket_name, source_file_name, destination_blob_name):
|
129 |
-
# # Uploads a file to a bucket
|
130 |
-
# # https://cloud.google.com/storage/docs/uploading-objects#storage-upload-object-python
|
131 |
-
#
|
132 |
-
# storage_client = storage.Client()
|
133 |
-
# bucket = storage_client.get_bucket(bucket_name)
|
134 |
-
# blob = bucket.blob(destination_blob_name)
|
135 |
-
#
|
136 |
-
# blob.upload_from_filename(source_file_name)
|
137 |
-
#
|
138 |
-
# print('File {} uploaded to {}.'.format(
|
139 |
-
# source_file_name,
|
140 |
-
# destination_blob_name))
|
141 |
-
#
|
142 |
-
#
|
143 |
-
# def download_blob(bucket_name, source_blob_name, destination_file_name):
|
144 |
-
# # Uploads a blob from a bucket
|
145 |
-
# storage_client = storage.Client()
|
146 |
-
# bucket = storage_client.get_bucket(bucket_name)
|
147 |
-
# blob = bucket.blob(source_blob_name)
|
148 |
-
#
|
149 |
-
# blob.download_to_filename(destination_file_name)
|
150 |
-
#
|
151 |
-
# print('Blob {} downloaded to {}.'.format(
|
152 |
-
# source_blob_name,
|
153 |
-
# destination_file_name))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/utils/flask_rest_api/README.md
DELETED
@@ -1,73 +0,0 @@
|
|
1 |
-
# Flask REST API
|
2 |
-
|
3 |
-
[REST](https://en.wikipedia.org/wiki/Representational_state_transfer) [API](https://en.wikipedia.org/wiki/API)s are
|
4 |
-
commonly used to expose Machine Learning (ML) models to other services. This folder contains an example REST API
|
5 |
-
created using Flask to expose the YOLOv5s model from [PyTorch Hub](https://pytorch.org/hub/ultralytics_yolov5/).
|
6 |
-
|
7 |
-
## Requirements
|
8 |
-
|
9 |
-
[Flask](https://palletsprojects.com/p/flask/) is required. Install with:
|
10 |
-
|
11 |
-
```shell
|
12 |
-
$ pip install Flask
|
13 |
-
```
|
14 |
-
|
15 |
-
## Run
|
16 |
-
|
17 |
-
After Flask installation run:
|
18 |
-
|
19 |
-
```shell
|
20 |
-
$ python3 restapi.py --port 5000
|
21 |
-
```
|
22 |
-
|
23 |
-
Then use [curl](https://curl.se/) to perform a request:
|
24 |
-
|
25 |
-
```shell
|
26 |
-
$ curl -X POST -F [email protected] 'http://localhost:5000/v1/object-detection/yolov5s'
|
27 |
-
```
|
28 |
-
|
29 |
-
The model inference results are returned as a JSON response:
|
30 |
-
|
31 |
-
```json
|
32 |
-
[
|
33 |
-
{
|
34 |
-
"class": 0,
|
35 |
-
"confidence": 0.8900438547,
|
36 |
-
"height": 0.9318675399,
|
37 |
-
"name": "person",
|
38 |
-
"width": 0.3264600933,
|
39 |
-
"xcenter": 0.7438579798,
|
40 |
-
"ycenter": 0.5207948685
|
41 |
-
},
|
42 |
-
{
|
43 |
-
"class": 0,
|
44 |
-
"confidence": 0.8440024257,
|
45 |
-
"height": 0.7155083418,
|
46 |
-
"name": "person",
|
47 |
-
"width": 0.6546785235,
|
48 |
-
"xcenter": 0.427829951,
|
49 |
-
"ycenter": 0.6334488392
|
50 |
-
},
|
51 |
-
{
|
52 |
-
"class": 27,
|
53 |
-
"confidence": 0.3771208823,
|
54 |
-
"height": 0.3902671337,
|
55 |
-
"name": "tie",
|
56 |
-
"width": 0.0696444362,
|
57 |
-
"xcenter": 0.3675483763,
|
58 |
-
"ycenter": 0.7991207838
|
59 |
-
},
|
60 |
-
{
|
61 |
-
"class": 27,
|
62 |
-
"confidence": 0.3527112305,
|
63 |
-
"height": 0.1540903747,
|
64 |
-
"name": "tie",
|
65 |
-
"width": 0.0336618312,
|
66 |
-
"xcenter": 0.7814827561,
|
67 |
-
"ycenter": 0.5065554976
|
68 |
-
}
|
69 |
-
]
|
70 |
-
```
|
71 |
-
|
72 |
-
An example python script to perform inference using [requests](https://docs.python-requests.org/en/master/) is given
|
73 |
-
in `example_request.py`
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|