nakamura196 commited on
Commit
2417fbd
1 Parent(s): 65450c1

feat: update v8

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitignore +2 -3
  2. README.md +1 -1
  3. app.py +52 -25
  4. init.sh +0 -3
  5. best.pt → model_- 19 may 2024 15_13.pt +2 -2
  6. requirements.txt +1 -5
  7. ultralytics/yolov5/export.py +0 -559
  8. ultralytics/yolov5/hubconf.py +0 -143
  9. ultralytics/yolov5/models/__init__.py +0 -0
  10. ultralytics/yolov5/models/common.py +0 -684
  11. ultralytics/yolov5/models/experimental.py +0 -121
  12. ultralytics/yolov5/models/hub/anchors.yaml +0 -59
  13. ultralytics/yolov5/models/hub/yolov3-spp.yaml +0 -51
  14. ultralytics/yolov5/models/hub/yolov3-tiny.yaml +0 -41
  15. ultralytics/yolov5/models/hub/yolov3.yaml +0 -51
  16. ultralytics/yolov5/models/hub/yolov5-bifpn.yaml +0 -48
  17. ultralytics/yolov5/models/hub/yolov5-fpn.yaml +0 -42
  18. ultralytics/yolov5/models/hub/yolov5-p2.yaml +0 -54
  19. ultralytics/yolov5/models/hub/yolov5-p34.yaml +0 -41
  20. ultralytics/yolov5/models/hub/yolov5-p6.yaml +0 -56
  21. ultralytics/yolov5/models/hub/yolov5-p7.yaml +0 -67
  22. ultralytics/yolov5/models/hub/yolov5-panet.yaml +0 -48
  23. ultralytics/yolov5/models/hub/yolov5l6.yaml +0 -60
  24. ultralytics/yolov5/models/hub/yolov5m6.yaml +0 -60
  25. ultralytics/yolov5/models/hub/yolov5n6.yaml +0 -60
  26. ultralytics/yolov5/models/hub/yolov5s-ghost.yaml +0 -48
  27. ultralytics/yolov5/models/hub/yolov5s-transformer.yaml +0 -48
  28. ultralytics/yolov5/models/hub/yolov5s6.yaml +0 -60
  29. ultralytics/yolov5/models/hub/yolov5x6.yaml +0 -60
  30. ultralytics/yolov5/models/tf.py +0 -466
  31. ultralytics/yolov5/models/yolo.py +0 -329
  32. ultralytics/yolov5/models/yolov5l.yaml +0 -48
  33. ultralytics/yolov5/models/yolov5m.yaml +0 -48
  34. ultralytics/yolov5/models/yolov5n.yaml +0 -48
  35. ultralytics/yolov5/models/yolov5s.yaml +0 -48
  36. ultralytics/yolov5/models/yolov5x.yaml +0 -48
  37. ultralytics/yolov5/utils/__init__.py +0 -36
  38. ultralytics/yolov5/utils/activations.py +0 -101
  39. ultralytics/yolov5/utils/augmentations.py +0 -277
  40. ultralytics/yolov5/utils/autoanchor.py +0 -170
  41. ultralytics/yolov5/utils/autobatch.py +0 -58
  42. ultralytics/yolov5/utils/aws/__init__.py +0 -0
  43. ultralytics/yolov5/utils/aws/mime.sh +0 -26
  44. ultralytics/yolov5/utils/aws/resume.py +0 -40
  45. ultralytics/yolov5/utils/aws/userdata.sh +0 -27
  46. ultralytics/yolov5/utils/benchmarks.py +0 -104
  47. ultralytics/yolov5/utils/callbacks.py +0 -78
  48. ultralytics/yolov5/utils/datasets.py +0 -1039
  49. ultralytics/yolov5/utils/downloads.py +0 -153
  50. ultralytics/yolov5/utils/flask_rest_api/README.md +0 -73
.gitignore CHANGED
@@ -1,7 +1,6 @@
1
  .DS_Store
2
- yolov5s.pt
3
  # __pycache__
4
  gradio_queue.db
5
  __pycache__
6
- .venv
7
- __pycache__
 
1
  .DS_Store
2
+ yolo*.pt
3
  # __pycache__
4
  gradio_queue.db
5
  __pycache__
6
+ .venv
 
README.md CHANGED
@@ -1,5 +1,5 @@
1
  ---
2
- title: Yolov5 Ndl Layout
3
  emoji: 🐢
4
  colorFrom: indigo
5
  colorTo: red
 
1
  ---
2
+ title: Yolov8 Ndl Layout
3
  emoji: 🐢
4
  colorFrom: indigo
5
  colorTo: red
app.py CHANGED
@@ -1,38 +1,65 @@
1
  import gradio as gr
2
- import torch
3
- from PIL import Image
4
  import json
5
 
6
- # Model
7
- model = torch.hub.load('ultralytics/yolov5', 'custom', path='best.pt', source="local")
8
 
9
- def yolo(im, size=1024):
10
- g = (size / max(im.size)) # gain
11
- im = im.resize((int(x * g) for x in im.size), resample=Image.Resampling.LANCZOS) # resize
12
 
13
- results = model(im) # inference
14
 
15
- results.render()
 
 
 
 
 
16
 
17
- df = results.pandas().xyxy[0].to_json(orient="records")
18
- res = json.loads(df)
19
 
20
- return [
21
- Image.fromarray(results.imgs[0]),
22
- res
23
- ]
 
 
 
 
 
 
 
 
 
 
 
 
24
 
 
 
 
25
 
26
- inputs = gr.Image(type='pil', label="Original Image")
27
- outputs = [
28
- gr.Image(type="pil", label="Output Image"),
29
- gr.JSON(label="Output JSON")
 
30
  ]
31
 
32
- title = "YOLOv5 NDL-DocL Datasets"
33
- description = "YOLOv5 NDL-DocL Datasets Gradio demo for object detection. Upload an image or click an example image to use."
34
- article = "<p style='text-align: center'>YOLOv5 NDL-DocL Datasets is an object detection model trained on the <a href=\"https://github.com/ndl-lab/layout-dataset\">NDL-DocL Datasets</a>.</p>"
 
 
 
 
 
 
 
 
 
 
 
35
 
36
- examples = [['『源氏物語』(東京大学総合図書館所蔵).jpg'], ['『源氏物語』(京都大学所蔵).jpg'], ['『平家物語』(国文学研究資料館提供).jpg']]
37
- demo = gr.Interface(yolo, inputs, outputs, title=title, description=description, article=article,examples=examples)
38
- demo.launch(share=False)
 
1
  import gradio as gr
 
 
2
  import json
3
 
4
+ from ultralyticsplus import YOLO, render_result
 
5
 
6
+ # Model Heading and Description
7
+ model_heading = "YOLOv8 NDL-DocL Datasets"
8
+ description = """YOLOv8 NDL-DocL Datasets Gradio demo for object detection. Upload an image or click an example image to use."""
9
 
10
+ article = "<p style='text-align: center'>YOLOv5 NDL-DocL Datasets is an object detection model trained on the <a href=\"https://github.com/ndl-lab/layout-dataset\">NDL-DocL Datasets</a>.</p>"
11
 
12
+ image_path= [
13
+
14
+ ['『源氏物語』(東京大学総合図書館所蔵).jpg', 0.25, 0.45],
15
+ ['『源氏物語』(京都大学所蔵).jpg', 0.25, 0.45],
16
+ ['『平家物語』(国文学研究資料館提供).jpg', 0.25, 0.45]
17
+ ]
18
 
19
+ # Load YOLO model
20
+ model = YOLO('model_- 19 may 2024 15_13.pt')
21
 
22
+ def yolov8_img_inference(
23
+ image: gr.Image = None,
24
+ conf_threshold: gr.Slider = 0.25,
25
+ iou_threshold: gr.Slider = 0.45,
26
+ ):
27
+ """
28
+ YOLOv8 inference function
29
+ Args:
30
+ image: Input image
31
+ conf_threshold: Confidence threshold
32
+ iou_threshold: IOU threshold
33
+ Returns:
34
+ Rendered image
35
+ """
36
+ results = model.predict(image, conf=conf_threshold, iou=iou_threshold)
37
+ render = render_result(model=model, image=image, result=results[0])
38
 
39
+ json_data = json.loads(results[0].tojson())
40
+
41
+ return render, json_data
42
 
43
+
44
+ inputs_image = [
45
+ gr.Image(type="filepath", label="Input Image"),
46
+ gr.Slider(minimum=0.0, maximum=1.0, value=0.25, step=0.05, label="Confidence Threshold"),
47
+ gr.Slider(minimum=0.0, maximum=1.0, value=0.45, step=0.05, label="IOU Threshold"),
48
  ]
49
 
50
+ outputs_image =[
51
+ gr.Image(type="filepath", label="Output Image"),
52
+ gr.JSON(label="Output JSON")
53
+ ]
54
+ demo = gr.Interface(
55
+ fn=yolov8_img_inference,
56
+ inputs=inputs_image,
57
+ outputs=outputs_image,
58
+ title=model_heading,
59
+ description=description,
60
+ examples=image_path,
61
+ article=article,
62
+ cache_examples=False
63
+ )
64
 
65
+ demo.launch(share=False)
 
 
init.sh CHANGED
@@ -1,6 +1,3 @@
1
- rm best.pt
2
- gdown https://drive.google.com/uc?id=1DduqMfElGLPYWZTbrEO8F3qn6VPOZDPM
3
-
4
  wget https://iiif.dl.itc.u-tokyo.ac.jp/iiif/genji/TIFF/A00_6587/01/01_0004.tif/full/1024,/0/default.jpg -O "『源氏物語』(東京大学総合図書館所蔵).jpg"
5
 
6
  wget https://rmda.kulib.kyoto-u.ac.jp/iiif/RB00007030/01/RB00007030_00003_0.ptif/full/1024,/0/default.jpg -O "『源氏物語』(京都大学所蔵).jpg"
 
 
 
 
1
  wget https://iiif.dl.itc.u-tokyo.ac.jp/iiif/genji/TIFF/A00_6587/01/01_0004.tif/full/1024,/0/default.jpg -O "『源氏物語』(東京大学総合図書館所蔵).jpg"
2
 
3
  wget https://rmda.kulib.kyoto-u.ac.jp/iiif/RB00007030/01/RB00007030_00003_0.ptif/full/1024,/0/default.jpg -O "『源氏物語』(京都大学所蔵).jpg"
best.pt → model_- 19 may 2024 15_13.pt RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:497dd54a738a54abfc938507c16b77e4e46930372e6e189ae87895aa5bba0b7c
3
- size 173348189
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8acb10e585c68b31142f2f4470606da52ce054ab467368b6bfe22ca547620e12
3
+ size 136737193
requirements.txt CHANGED
@@ -1,5 +1 @@
1
- torch
2
- Pillow
3
- opencv-python
4
- torchvision
5
- seaborn
 
1
+ ultralyticsplus
 
 
 
 
ultralytics/yolov5/export.py DELETED
@@ -1,559 +0,0 @@
1
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
- """
3
- Export a YOLOv5 PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit
4
-
5
- Format | `export.py --include` | Model
6
- --- | --- | ---
7
- PyTorch | - | yolov5s.pt
8
- TorchScript | `torchscript` | yolov5s.torchscript
9
- ONNX | `onnx` | yolov5s.onnx
10
- OpenVINO | `openvino` | yolov5s_openvino_model/
11
- TensorRT | `engine` | yolov5s.engine
12
- CoreML | `coreml` | yolov5s.mlmodel
13
- TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/
14
- TensorFlow GraphDef | `pb` | yolov5s.pb
15
- TensorFlow Lite | `tflite` | yolov5s.tflite
16
- TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite
17
- TensorFlow.js | `tfjs` | yolov5s_web_model/
18
-
19
- Requirements:
20
- $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU
21
- $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU
22
-
23
- Usage:
24
- $ python path/to/export.py --weights yolov5s.pt --include torchscript onnx openvino engine coreml tflite ...
25
-
26
- Inference:
27
- $ python path/to/detect.py --weights yolov5s.pt # PyTorch
28
- yolov5s.torchscript # TorchScript
29
- yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
30
- yolov5s.xml # OpenVINO
31
- yolov5s.engine # TensorRT
32
- yolov5s.mlmodel # CoreML (MacOS-only)
33
- yolov5s_saved_model # TensorFlow SavedModel
34
- yolov5s.pb # TensorFlow GraphDef
35
- yolov5s.tflite # TensorFlow Lite
36
- yolov5s_edgetpu.tflite # TensorFlow Edge TPU
37
-
38
- TensorFlow.js:
39
- $ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example
40
- $ npm install
41
- $ ln -s ../../yolov5/yolov5s_web_model public/yolov5s_web_model
42
- $ npm start
43
- """
44
-
45
- import argparse
46
- import json
47
- import os
48
- import platform
49
- import subprocess
50
- import sys
51
- import time
52
- import warnings
53
- from pathlib import Path
54
-
55
- import pandas as pd
56
- import torch
57
- import torch.nn as nn
58
- from torch.utils.mobile_optimizer import optimize_for_mobile
59
-
60
- FILE = Path(__file__).resolve()
61
- ROOT = FILE.parents[0] # YOLOv5 root directory
62
- if str(ROOT) not in sys.path:
63
- sys.path.append(str(ROOT)) # add ROOT to PATH
64
- ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
65
-
66
- from models.common import Conv
67
- from models.experimental import attempt_load
68
- from models.yolo import Detect
69
- from utils.activations import SiLU
70
- from utils.datasets import LoadImages
71
- from utils.general import (LOGGER, check_dataset, check_img_size, check_requirements, check_version, colorstr,
72
- file_size, print_args, url2file)
73
- from utils.torch_utils import select_device
74
-
75
-
76
- def export_formats():
77
- # YOLOv5 export formats
78
- x = [['PyTorch', '-', '.pt', True],
79
- ['TorchScript', 'torchscript', '.torchscript', True],
80
- ['ONNX', 'onnx', '.onnx', True],
81
- ['OpenVINO', 'openvino', '_openvino_model', False],
82
- ['TensorRT', 'engine', '.engine', True],
83
- ['CoreML', 'coreml', '.mlmodel', False],
84
- ['TensorFlow SavedModel', 'saved_model', '_saved_model', True],
85
- ['TensorFlow GraphDef', 'pb', '.pb', True],
86
- ['TensorFlow Lite', 'tflite', '.tflite', False],
87
- ['TensorFlow Edge TPU', 'edgetpu', '_edgetpu.tflite', False],
88
- ['TensorFlow.js', 'tfjs', '_web_model', False]]
89
- return pd.DataFrame(x, columns=['Format', 'Argument', 'Suffix', 'GPU'])
90
-
91
-
92
- def export_torchscript(model, im, file, optimize, prefix=colorstr('TorchScript:')):
93
- # YOLOv5 TorchScript model export
94
- try:
95
- LOGGER.info(f'\n{prefix} starting export with torch {torch.__version__}...')
96
- f = file.with_suffix('.torchscript')
97
-
98
- ts = torch.jit.trace(model, im, strict=False)
99
- d = {"shape": im.shape, "stride": int(max(model.stride)), "names": model.names}
100
- extra_files = {'config.txt': json.dumps(d)} # torch._C.ExtraFilesMap()
101
- if optimize: # https://pytorch.org/tutorials/recipes/mobile_interpreter.html
102
- optimize_for_mobile(ts)._save_for_lite_interpreter(str(f), _extra_files=extra_files)
103
- else:
104
- ts.save(str(f), _extra_files=extra_files)
105
-
106
- LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
107
- return f
108
- except Exception as e:
109
- LOGGER.info(f'{prefix} export failure: {e}')
110
-
111
-
112
- def export_onnx(model, im, file, opset, train, dynamic, simplify, prefix=colorstr('ONNX:')):
113
- # YOLOv5 ONNX export
114
- try:
115
- check_requirements(('onnx',))
116
- import onnx
117
-
118
- LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__}...')
119
- f = file.with_suffix('.onnx')
120
-
121
- torch.onnx.export(model, im, f, verbose=False, opset_version=opset,
122
- training=torch.onnx.TrainingMode.TRAINING if train else torch.onnx.TrainingMode.EVAL,
123
- do_constant_folding=not train,
124
- input_names=['images'],
125
- output_names=['output'],
126
- dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # shape(1,3,640,640)
127
- 'output': {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
128
- } if dynamic else None)
129
-
130
- # Checks
131
- model_onnx = onnx.load(f) # load onnx model
132
- onnx.checker.check_model(model_onnx) # check onnx model
133
- # LOGGER.info(onnx.helper.printable_graph(model_onnx.graph)) # print
134
-
135
- # Simplify
136
- if simplify:
137
- try:
138
- check_requirements(('onnx-simplifier',))
139
- import onnxsim
140
-
141
- LOGGER.info(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
142
- model_onnx, check = onnxsim.simplify(
143
- model_onnx,
144
- dynamic_input_shape=dynamic,
145
- input_shapes={'images': list(im.shape)} if dynamic else None)
146
- assert check, 'assert check failed'
147
- onnx.save(model_onnx, f)
148
- except Exception as e:
149
- LOGGER.info(f'{prefix} simplifier failure: {e}')
150
- LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
151
- return f
152
- except Exception as e:
153
- LOGGER.info(f'{prefix} export failure: {e}')
154
-
155
-
156
- def export_openvino(model, im, file, prefix=colorstr('OpenVINO:')):
157
- # YOLOv5 OpenVINO export
158
- try:
159
- check_requirements(('openvino-dev',)) # requires openvino-dev: https://pypi.org/project/openvino-dev/
160
- import openvino.inference_engine as ie
161
-
162
- LOGGER.info(f'\n{prefix} starting export with openvino {ie.__version__}...')
163
- f = str(file).replace('.pt', '_openvino_model' + os.sep)
164
-
165
- cmd = f"mo --input_model {file.with_suffix('.onnx')} --output_dir {f}"
166
- subprocess.check_output(cmd, shell=True)
167
-
168
- LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
169
- return f
170
- except Exception as e:
171
- LOGGER.info(f'\n{prefix} export failure: {e}')
172
-
173
-
174
- def export_coreml(model, im, file, prefix=colorstr('CoreML:')):
175
- # YOLOv5 CoreML export
176
- try:
177
- check_requirements(('coremltools',))
178
- import coremltools as ct
179
-
180
- LOGGER.info(f'\n{prefix} starting export with coremltools {ct.__version__}...')
181
- f = file.with_suffix('.mlmodel')
182
-
183
- ts = torch.jit.trace(model, im, strict=False) # TorchScript model
184
- ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=im.shape, scale=1 / 255, bias=[0, 0, 0])])
185
- ct_model.save(f)
186
-
187
- LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
188
- return ct_model, f
189
- except Exception as e:
190
- LOGGER.info(f'\n{prefix} export failure: {e}')
191
- return None, None
192
-
193
-
194
- def export_engine(model, im, file, train, half, simplify, workspace=4, verbose=False, prefix=colorstr('TensorRT:')):
195
- # YOLOv5 TensorRT export https://developer.nvidia.com/tensorrt
196
- try:
197
- check_requirements(('tensorrt',))
198
- import tensorrt as trt
199
-
200
- if trt.__version__[0] == '7': # TensorRT 7 handling https://github.com/ultralytics/yolov5/issues/6012
201
- grid = model.model[-1].anchor_grid
202
- model.model[-1].anchor_grid = [a[..., :1, :1, :] for a in grid]
203
- export_onnx(model, im, file, 12, train, False, simplify) # opset 12
204
- model.model[-1].anchor_grid = grid
205
- else: # TensorRT >= 8
206
- check_version(trt.__version__, '8.0.0', hard=True) # require tensorrt>=8.0.0
207
- export_onnx(model, im, file, 13, train, False, simplify) # opset 13
208
- onnx = file.with_suffix('.onnx')
209
-
210
- LOGGER.info(f'\n{prefix} starting export with TensorRT {trt.__version__}...')
211
- assert im.device.type != 'cpu', 'export running on CPU but must be on GPU, i.e. `python export.py --device 0`'
212
- assert onnx.exists(), f'failed to export ONNX file: {onnx}'
213
- f = file.with_suffix('.engine') # TensorRT engine file
214
- logger = trt.Logger(trt.Logger.INFO)
215
- if verbose:
216
- logger.min_severity = trt.Logger.Severity.VERBOSE
217
-
218
- builder = trt.Builder(logger)
219
- config = builder.create_builder_config()
220
- config.max_workspace_size = workspace * 1 << 30
221
- # config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace << 30) # fix TRT 8.4 deprecation notice
222
-
223
- flag = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
224
- network = builder.create_network(flag)
225
- parser = trt.OnnxParser(network, logger)
226
- if not parser.parse_from_file(str(onnx)):
227
- raise RuntimeError(f'failed to load ONNX file: {onnx}')
228
-
229
- inputs = [network.get_input(i) for i in range(network.num_inputs)]
230
- outputs = [network.get_output(i) for i in range(network.num_outputs)]
231
- LOGGER.info(f'{prefix} Network Description:')
232
- for inp in inputs:
233
- LOGGER.info(f'{prefix}\tinput "{inp.name}" with shape {inp.shape} and dtype {inp.dtype}')
234
- for out in outputs:
235
- LOGGER.info(f'{prefix}\toutput "{out.name}" with shape {out.shape} and dtype {out.dtype}')
236
-
237
- LOGGER.info(f'{prefix} building FP{16 if builder.platform_has_fast_fp16 else 32} engine in {f}')
238
- if builder.platform_has_fast_fp16:
239
- config.set_flag(trt.BuilderFlag.FP16)
240
- with builder.build_engine(network, config) as engine, open(f, 'wb') as t:
241
- t.write(engine.serialize())
242
- LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
243
- return f
244
- except Exception as e:
245
- LOGGER.info(f'\n{prefix} export failure: {e}')
246
-
247
-
248
- def export_saved_model(model, im, file, dynamic,
249
- tf_nms=False, agnostic_nms=False, topk_per_class=100, topk_all=100, iou_thres=0.45,
250
- conf_thres=0.25, keras=False, prefix=colorstr('TensorFlow SavedModel:')):
251
- # YOLOv5 TensorFlow SavedModel export
252
- try:
253
- import tensorflow as tf
254
- from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
255
-
256
- from models.tf import TFDetect, TFModel
257
-
258
- LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
259
- f = str(file).replace('.pt', '_saved_model')
260
- batch_size, ch, *imgsz = list(im.shape) # BCHW
261
-
262
- tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
263
- im = tf.zeros((batch_size, *imgsz, ch)) # BHWC order for TensorFlow
264
- _ = tf_model.predict(im, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
265
- inputs = tf.keras.Input(shape=(*imgsz, ch), batch_size=None if dynamic else batch_size)
266
- outputs = tf_model.predict(inputs, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
267
- keras_model = tf.keras.Model(inputs=inputs, outputs=outputs)
268
- keras_model.trainable = False
269
- keras_model.summary()
270
- if keras:
271
- keras_model.save(f, save_format='tf')
272
- else:
273
- m = tf.function(lambda x: keras_model(x)) # full model
274
- spec = tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype)
275
- m = m.get_concrete_function(spec)
276
- frozen_func = convert_variables_to_constants_v2(m)
277
- tfm = tf.Module()
278
- tfm.__call__ = tf.function(lambda x: frozen_func(x)[0], [spec])
279
- tfm.__call__(im)
280
- tf.saved_model.save(
281
- tfm,
282
- f,
283
- options=tf.saved_model.SaveOptions(experimental_custom_gradients=False) if
284
- check_version(tf.__version__, '2.6') else tf.saved_model.SaveOptions())
285
- LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
286
- return keras_model, f
287
- except Exception as e:
288
- LOGGER.info(f'\n{prefix} export failure: {e}')
289
- return None, None
290
-
291
-
292
- def export_pb(keras_model, im, file, prefix=colorstr('TensorFlow GraphDef:')):
293
- # YOLOv5 TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow
294
- try:
295
- import tensorflow as tf
296
- from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
297
-
298
- LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
299
- f = file.with_suffix('.pb')
300
-
301
- m = tf.function(lambda x: keras_model(x)) # full model
302
- m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype))
303
- frozen_func = convert_variables_to_constants_v2(m)
304
- frozen_func.graph.as_graph_def()
305
- tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False)
306
-
307
- LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
308
- return f
309
- except Exception as e:
310
- LOGGER.info(f'\n{prefix} export failure: {e}')
311
-
312
-
313
- def export_tflite(keras_model, im, file, int8, data, ncalib, prefix=colorstr('TensorFlow Lite:')):
314
- # YOLOv5 TensorFlow Lite export
315
- try:
316
- import tensorflow as tf
317
-
318
- LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
319
- batch_size, ch, *imgsz = list(im.shape) # BCHW
320
- f = str(file).replace('.pt', '-fp16.tflite')
321
-
322
- converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
323
- converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
324
- converter.target_spec.supported_types = [tf.float16]
325
- converter.optimizations = [tf.lite.Optimize.DEFAULT]
326
- if int8:
327
- from models.tf import representative_dataset_gen
328
- dataset = LoadImages(check_dataset(data)['train'], img_size=imgsz, auto=False) # representative data
329
- converter.representative_dataset = lambda: representative_dataset_gen(dataset, ncalib)
330
- converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
331
- converter.target_spec.supported_types = []
332
- converter.inference_input_type = tf.uint8 # or tf.int8
333
- converter.inference_output_type = tf.uint8 # or tf.int8
334
- converter.experimental_new_quantizer = True
335
- f = str(file).replace('.pt', '-int8.tflite')
336
-
337
- tflite_model = converter.convert()
338
- open(f, "wb").write(tflite_model)
339
- LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
340
- return f
341
- except Exception as e:
342
- LOGGER.info(f'\n{prefix} export failure: {e}')
343
-
344
-
345
- def export_edgetpu(keras_model, im, file, prefix=colorstr('Edge TPU:')):
346
- # YOLOv5 Edge TPU export https://coral.ai/docs/edgetpu/models-intro/
347
- try:
348
- cmd = 'edgetpu_compiler --version'
349
- help_url = 'https://coral.ai/docs/edgetpu/compiler/'
350
- assert platform.system() == 'Linux', f'export only supported on Linux. See {help_url}'
351
- if subprocess.run(cmd + ' >/dev/null', shell=True).returncode != 0:
352
- LOGGER.info(f'\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}')
353
- sudo = subprocess.run('sudo --version >/dev/null', shell=True).returncode == 0 # sudo installed on system
354
- for c in ['curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -',
355
- 'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list',
356
- 'sudo apt-get update',
357
- 'sudo apt-get install edgetpu-compiler']:
358
- subprocess.run(c if sudo else c.replace('sudo ', ''), shell=True, check=True)
359
- ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1]
360
-
361
- LOGGER.info(f'\n{prefix} starting export with Edge TPU compiler {ver}...')
362
- f = str(file).replace('.pt', '-int8_edgetpu.tflite') # Edge TPU model
363
- f_tfl = str(file).replace('.pt', '-int8.tflite') # TFLite model
364
-
365
- cmd = f"edgetpu_compiler -s {f_tfl}"
366
- subprocess.run(cmd, shell=True, check=True)
367
-
368
- LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
369
- return f
370
- except Exception as e:
371
- LOGGER.info(f'\n{prefix} export failure: {e}')
372
-
373
-
374
- def export_tfjs(keras_model, im, file, prefix=colorstr('TensorFlow.js:')):
375
- # YOLOv5 TensorFlow.js export
376
- try:
377
- check_requirements(('tensorflowjs',))
378
- import re
379
-
380
- import tensorflowjs as tfjs
381
-
382
- LOGGER.info(f'\n{prefix} starting export with tensorflowjs {tfjs.__version__}...')
383
- f = str(file).replace('.pt', '_web_model') # js dir
384
- f_pb = file.with_suffix('.pb') # *.pb path
385
- f_json = f + '/model.json' # *.json path
386
-
387
- cmd = f'tensorflowjs_converter --input_format=tf_frozen_model ' \
388
- f'--output_node_names="Identity,Identity_1,Identity_2,Identity_3" {f_pb} {f}'
389
- subprocess.run(cmd, shell=True)
390
-
391
- json = open(f_json).read()
392
- with open(f_json, 'w') as j: # sort JSON Identity_* in ascending order
393
- subst = re.sub(
394
- r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, '
395
- r'"Identity.?.?": {"name": "Identity.?.?"}, '
396
- r'"Identity.?.?": {"name": "Identity.?.?"}, '
397
- r'"Identity.?.?": {"name": "Identity.?.?"}}}',
398
- r'{"outputs": {"Identity": {"name": "Identity"}, '
399
- r'"Identity_1": {"name": "Identity_1"}, '
400
- r'"Identity_2": {"name": "Identity_2"}, '
401
- r'"Identity_3": {"name": "Identity_3"}}}',
402
- json)
403
- j.write(subst)
404
-
405
- LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
406
- return f
407
- except Exception as e:
408
- LOGGER.info(f'\n{prefix} export failure: {e}')
409
-
410
-
411
- @torch.no_grad()
412
- def run(data=ROOT / 'data/coco128.yaml', # 'dataset.yaml path'
413
- weights=ROOT / 'yolov5s.pt', # weights path
414
- imgsz=(640, 640), # image (height, width)
415
- batch_size=1, # batch size
416
- device='cpu', # cuda device, i.e. 0 or 0,1,2,3 or cpu
417
- include=('torchscript', 'onnx'), # include formats
418
- half=False, # FP16 half-precision export
419
- inplace=False, # set YOLOv5 Detect() inplace=True
420
- train=False, # model.train() mode
421
- optimize=False, # TorchScript: optimize for mobile
422
- int8=False, # CoreML/TF INT8 quantization
423
- dynamic=False, # ONNX/TF: dynamic axes
424
- simplify=False, # ONNX: simplify model
425
- opset=12, # ONNX: opset version
426
- verbose=False, # TensorRT: verbose log
427
- workspace=4, # TensorRT: workspace size (GB)
428
- nms=False, # TF: add NMS to model
429
- agnostic_nms=False, # TF: add agnostic NMS to model
430
- topk_per_class=100, # TF.js NMS: topk per class to keep
431
- topk_all=100, # TF.js NMS: topk for all classes to keep
432
- iou_thres=0.45, # TF.js NMS: IoU threshold
433
- conf_thres=0.25 # TF.js NMS: confidence threshold
434
- ):
435
- t = time.time()
436
- include = [x.lower() for x in include] # to lowercase
437
- formats = tuple(export_formats()['Argument'][1:]) # --include arguments
438
- flags = [x in include for x in formats]
439
- assert sum(flags) == len(include), f'ERROR: Invalid --include {include}, valid --include arguments are {formats}'
440
- jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs = flags # export booleans
441
- file = Path(url2file(weights) if str(weights).startswith(('http:/', 'https:/')) else weights) # PyTorch weights
442
-
443
- # Load PyTorch model
444
- device = select_device(device)
445
- assert not (device.type == 'cpu' and half), '--half only compatible with GPU export, i.e. use --device 0'
446
- model = attempt_load(weights, map_location=device, inplace=True, fuse=True) # load FP32 model
447
- nc, names = model.nc, model.names # number of classes, class names
448
-
449
- # Checks
450
- imgsz *= 2 if len(imgsz) == 1 else 1 # expand
451
- opset = 12 if ('openvino' in include) else opset # OpenVINO requires opset <= 12
452
- assert nc == len(names), f'Model class count {nc} != len(names) {len(names)}'
453
-
454
- # Input
455
- gs = int(max(model.stride)) # grid size (max stride)
456
- imgsz = [check_img_size(x, gs) for x in imgsz] # verify img_size are gs-multiples
457
- im = torch.zeros(batch_size, 3, *imgsz).to(device) # image size(1,3,320,192) BCHW iDetection
458
-
459
- # Update model
460
- if half:
461
- im, model = im.half(), model.half() # to FP16
462
- model.train() if train else model.eval() # training mode = no Detect() layer grid construction
463
- for k, m in model.named_modules():
464
- if isinstance(m, Conv): # assign export-friendly activations
465
- if isinstance(m.act, nn.SiLU):
466
- m.act = SiLU()
467
- elif isinstance(m, Detect):
468
- m.inplace = inplace
469
- m.onnx_dynamic = dynamic
470
- if hasattr(m, 'forward_export'):
471
- m.forward = m.forward_export # assign custom forward (optional)
472
-
473
- for _ in range(2):
474
- y = model(im) # dry runs
475
- shape = tuple(y[0].shape) # model output shape
476
- LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} with output shape {shape} ({file_size(file):.1f} MB)")
477
-
478
- # Exports
479
- f = [''] * 10 # exported filenames
480
- warnings.filterwarnings(action='ignore', category=torch.jit.TracerWarning) # suppress TracerWarning
481
- if jit:
482
- f[0] = export_torchscript(model, im, file, optimize)
483
- if engine: # TensorRT required before ONNX
484
- f[1] = export_engine(model, im, file, train, half, simplify, workspace, verbose)
485
- if onnx or xml: # OpenVINO requires ONNX
486
- f[2] = export_onnx(model, im, file, opset, train, dynamic, simplify)
487
- if xml: # OpenVINO
488
- f[3] = export_openvino(model, im, file)
489
- if coreml:
490
- _, f[4] = export_coreml(model, im, file)
491
-
492
- # TensorFlow Exports
493
- if any((saved_model, pb, tflite, edgetpu, tfjs)):
494
- if int8 or edgetpu: # TFLite --int8 bug https://github.com/ultralytics/yolov5/issues/5707
495
- check_requirements(('flatbuffers==1.12',)) # required before `import tensorflow`
496
- assert not (tflite and tfjs), 'TFLite and TF.js models must be exported separately, please pass only one type.'
497
- model, f[5] = export_saved_model(model.cpu(), im, file, dynamic, tf_nms=nms or agnostic_nms or tfjs,
498
- agnostic_nms=agnostic_nms or tfjs, topk_per_class=topk_per_class,
499
- topk_all=topk_all, conf_thres=conf_thres, iou_thres=iou_thres) # keras model
500
- if pb or tfjs: # pb prerequisite to tfjs
501
- f[6] = export_pb(model, im, file)
502
- if tflite or edgetpu:
503
- f[7] = export_tflite(model, im, file, int8=int8 or edgetpu, data=data, ncalib=100)
504
- if edgetpu:
505
- f[8] = export_edgetpu(model, im, file)
506
- if tfjs:
507
- f[9] = export_tfjs(model, im, file)
508
-
509
- # Finish
510
- f = [str(x) for x in f if x] # filter out '' and None
511
- if any(f):
512
- LOGGER.info(f'\nExport complete ({time.time() - t:.2f}s)'
513
- f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
514
- f"\nDetect: python detect.py --weights {f[-1]}"
515
- f"\nPyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', '{f[-1]}')"
516
- f"\nValidate: python val.py --weights {f[-1]}"
517
- f"\nVisualize: https://netron.app")
518
- return f # return list of exported files/dirs
519
-
520
-
521
- def parse_opt():
522
- parser = argparse.ArgumentParser()
523
- parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
524
- parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model.pt path(s)')
525
- parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640, 640], help='image (h, w)')
526
- parser.add_argument('--batch-size', type=int, default=1, help='batch size')
527
- parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
528
- parser.add_argument('--half', action='store_true', help='FP16 half-precision export')
529
- parser.add_argument('--inplace', action='store_true', help='set YOLOv5 Detect() inplace=True')
530
- parser.add_argument('--train', action='store_true', help='model.train() mode')
531
- parser.add_argument('--optimize', action='store_true', help='TorchScript: optimize for mobile')
532
- parser.add_argument('--int8', action='store_true', help='CoreML/TF INT8 quantization')
533
- parser.add_argument('--dynamic', action='store_true', help='ONNX/TF: dynamic axes')
534
- parser.add_argument('--simplify', action='store_true', help='ONNX: simplify model')
535
- parser.add_argument('--opset', type=int, default=12, help='ONNX: opset version')
536
- parser.add_argument('--verbose', action='store_true', help='TensorRT: verbose log')
537
- parser.add_argument('--workspace', type=int, default=4, help='TensorRT: workspace size (GB)')
538
- parser.add_argument('--nms', action='store_true', help='TF: add NMS to model')
539
- parser.add_argument('--agnostic-nms', action='store_true', help='TF: add agnostic NMS to model')
540
- parser.add_argument('--topk-per-class', type=int, default=100, help='TF.js NMS: topk per class to keep')
541
- parser.add_argument('--topk-all', type=int, default=100, help='TF.js NMS: topk for all classes to keep')
542
- parser.add_argument('--iou-thres', type=float, default=0.45, help='TF.js NMS: IoU threshold')
543
- parser.add_argument('--conf-thres', type=float, default=0.25, help='TF.js NMS: confidence threshold')
544
- parser.add_argument('--include', nargs='+',
545
- default=['torchscript', 'onnx'],
546
- help='torchscript, onnx, openvino, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs')
547
- opt = parser.parse_args()
548
- print_args(FILE.stem, opt)
549
- return opt
550
-
551
-
552
- def main(opt):
553
- for opt.weights in (opt.weights if isinstance(opt.weights, list) else [opt.weights]):
554
- run(**vars(opt))
555
-
556
-
557
- if __name__ == "__main__":
558
- opt = parse_opt()
559
- main(opt)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ultralytics/yolov5/hubconf.py DELETED
@@ -1,143 +0,0 @@
1
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
- """
3
- PyTorch Hub models https://pytorch.org/hub/ultralytics_yolov5/
4
-
5
- Usage:
6
- import torch
7
- model = torch.hub.load('ultralytics/yolov5', 'yolov5s')
8
- model = torch.hub.load('ultralytics/yolov5:master', 'custom', 'path/to/yolov5s.onnx') # file from branch
9
- """
10
-
11
- import torch
12
-
13
-
14
- def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
15
- """Creates or loads a YOLOv5 model
16
-
17
- Arguments:
18
- name (str): model name 'yolov5s' or path 'path/to/best.pt'
19
- pretrained (bool): load pretrained weights into the model
20
- channels (int): number of input channels
21
- classes (int): number of model classes
22
- autoshape (bool): apply YOLOv5 .autoshape() wrapper to model
23
- verbose (bool): print all information to screen
24
- device (str, torch.device, None): device to use for model parameters
25
-
26
- Returns:
27
- YOLOv5 model
28
- """
29
- from pathlib import Path
30
-
31
- from models.common import AutoShape, DetectMultiBackend
32
- from models.yolo import Model
33
- from utils.downloads import attempt_download
34
- from utils.general import LOGGER, check_requirements, intersect_dicts, logging
35
- from utils.torch_utils import select_device
36
-
37
- if not verbose:
38
- LOGGER.setLevel(logging.WARNING)
39
- check_requirements(exclude=('tensorboard', 'thop', 'opencv-python'))
40
- name = Path(name)
41
- path = name.with_suffix('.pt') if name.suffix == '' else name # checkpoint path
42
- try:
43
- device = select_device(('0' if torch.cuda.is_available() else 'cpu') if device is None else device)
44
-
45
- if pretrained and channels == 3 and classes == 80:
46
- model = DetectMultiBackend(path, device=device) # download/load FP32 model
47
- # model = models.experimental.attempt_load(path, map_location=device) # download/load FP32 model
48
- else:
49
- cfg = list((Path(__file__).parent / 'models').rglob(f'{path.stem}.yaml'))[0] # model.yaml path
50
- model = Model(cfg, channels, classes) # create model
51
- if pretrained:
52
- ckpt = torch.load(attempt_download(path), map_location=device) # load
53
- csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
54
- csd = intersect_dicts(csd, model.state_dict(), exclude=['anchors']) # intersect
55
- model.load_state_dict(csd, strict=False) # load
56
- if len(ckpt['model'].names) == classes:
57
- model.names = ckpt['model'].names # set class names attribute
58
- if autoshape:
59
- model = AutoShape(model) # for file/URI/PIL/cv2/np inputs and NMS
60
- return model.to(device)
61
-
62
- except Exception as e:
63
- help_url = 'https://github.com/ultralytics/yolov5/issues/36'
64
- s = f'{e}. Cache may be out of date, try `force_reload=True` or see {help_url} for help.'
65
- raise Exception(s) from e
66
-
67
-
68
- def custom(path='path/to/model.pt', autoshape=True, verbose=True, device=None):
69
- # YOLOv5 custom or local model
70
- return _create(path, autoshape=autoshape, verbose=verbose, device=device)
71
-
72
-
73
- def yolov5n(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
74
- # YOLOv5-nano model https://github.com/ultralytics/yolov5
75
- return _create('yolov5n', pretrained, channels, classes, autoshape, verbose, device)
76
-
77
-
78
- def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
79
- # YOLOv5-small model https://github.com/ultralytics/yolov5
80
- return _create('yolov5s', pretrained, channels, classes, autoshape, verbose, device)
81
-
82
-
83
- def yolov5m(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
84
- # YOLOv5-medium model https://github.com/ultralytics/yolov5
85
- return _create('yolov5m', pretrained, channels, classes, autoshape, verbose, device)
86
-
87
-
88
- def yolov5l(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
89
- # YOLOv5-large model https://github.com/ultralytics/yolov5
90
- return _create('yolov5l', pretrained, channels, classes, autoshape, verbose, device)
91
-
92
-
93
- def yolov5x(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
94
- # YOLOv5-xlarge model https://github.com/ultralytics/yolov5
95
- return _create('yolov5x', pretrained, channels, classes, autoshape, verbose, device)
96
-
97
-
98
- def yolov5n6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
99
- # YOLOv5-nano-P6 model https://github.com/ultralytics/yolov5
100
- return _create('yolov5n6', pretrained, channels, classes, autoshape, verbose, device)
101
-
102
-
103
- def yolov5s6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
104
- # YOLOv5-small-P6 model https://github.com/ultralytics/yolov5
105
- return _create('yolov5s6', pretrained, channels, classes, autoshape, verbose, device)
106
-
107
-
108
- def yolov5m6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
109
- # YOLOv5-medium-P6 model https://github.com/ultralytics/yolov5
110
- return _create('yolov5m6', pretrained, channels, classes, autoshape, verbose, device)
111
-
112
-
113
- def yolov5l6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
114
- # YOLOv5-large-P6 model https://github.com/ultralytics/yolov5
115
- return _create('yolov5l6', pretrained, channels, classes, autoshape, verbose, device)
116
-
117
-
118
- def yolov5x6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
119
- # YOLOv5-xlarge-P6 model https://github.com/ultralytics/yolov5
120
- return _create('yolov5x6', pretrained, channels, classes, autoshape, verbose, device)
121
-
122
-
123
- if __name__ == '__main__':
124
- model = _create(name='yolov5s', pretrained=True, channels=3, classes=80, autoshape=True, verbose=True) # pretrained
125
- # model = custom(path='path/to/model.pt') # custom
126
-
127
- # Verify inference
128
- from pathlib import Path
129
-
130
- import cv2
131
- import numpy as np
132
- from PIL import Image
133
-
134
- imgs = ['data/images/zidane.jpg', # filename
135
- Path('data/images/zidane.jpg'), # Path
136
- 'https://ultralytics.com/images/zidane.jpg', # URI
137
- cv2.imread('data/images/bus.jpg')[:, :, ::-1], # OpenCV
138
- Image.open('data/images/bus.jpg'), # PIL
139
- np.zeros((320, 640, 3))] # numpy
140
-
141
- results = model(imgs, size=320) # batched inference
142
- results.print()
143
- results.save()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ultralytics/yolov5/models/__init__.py DELETED
File without changes
ultralytics/yolov5/models/common.py DELETED
@@ -1,684 +0,0 @@
1
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
- """
3
- Common modules
4
- """
5
-
6
- import json
7
- import math
8
- import platform
9
- import warnings
10
- from collections import OrderedDict, namedtuple
11
- from copy import copy
12
- from pathlib import Path
13
-
14
- import cv2
15
- import numpy as np
16
- import pandas as pd
17
- import requests
18
- import torch
19
- import torch.nn as nn
20
- import yaml
21
- from PIL import Image
22
- from torch.cuda import amp
23
-
24
- from utils.datasets import exif_transpose, letterbox
25
- from utils.general import (LOGGER, check_requirements, check_suffix, check_version, colorstr, increment_path,
26
- make_divisible, non_max_suppression, scale_coords, xywh2xyxy, xyxy2xywh)
27
- from utils.plots import Annotator, colors, save_one_box
28
- from utils.torch_utils import copy_attr, time_sync
29
-
30
-
31
- def autopad(k, p=None): # kernel, padding
32
- # Pad to 'same'
33
- if p is None:
34
- p = k // 2 if isinstance(k, int) else (x // 2 for x in k) # auto-pad
35
- return p
36
-
37
-
38
- class Conv(nn.Module):
39
- # Standard convolution
40
- def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
41
- super().__init__()
42
- self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
43
- self.bn = nn.BatchNorm2d(c2)
44
- self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
45
-
46
- def forward(self, x):
47
- return self.act(self.bn(self.conv(x)))
48
-
49
- def forward_fuse(self, x):
50
- return self.act(self.conv(x))
51
-
52
-
53
- class DWConv(Conv):
54
- # Depth-wise convolution class
55
- def __init__(self, c1, c2, k=1, s=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
56
- super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), act=act)
57
-
58
-
59
- class TransformerLayer(nn.Module):
60
- # Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance)
61
- def __init__(self, c, num_heads):
62
- super().__init__()
63
- self.q = nn.Linear(c, c, bias=False)
64
- self.k = nn.Linear(c, c, bias=False)
65
- self.v = nn.Linear(c, c, bias=False)
66
- self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads)
67
- self.fc1 = nn.Linear(c, c, bias=False)
68
- self.fc2 = nn.Linear(c, c, bias=False)
69
-
70
- def forward(self, x):
71
- x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x
72
- x = self.fc2(self.fc1(x)) + x
73
- return x
74
-
75
-
76
- class TransformerBlock(nn.Module):
77
- # Vision Transformer https://arxiv.org/abs/2010.11929
78
- def __init__(self, c1, c2, num_heads, num_layers):
79
- super().__init__()
80
- self.conv = None
81
- if c1 != c2:
82
- self.conv = Conv(c1, c2)
83
- self.linear = nn.Linear(c2, c2) # learnable position embedding
84
- self.tr = nn.Sequential(*(TransformerLayer(c2, num_heads) for _ in range(num_layers)))
85
- self.c2 = c2
86
-
87
- def forward(self, x):
88
- if self.conv is not None:
89
- x = self.conv(x)
90
- b, _, w, h = x.shape
91
- p = x.flatten(2).permute(2, 0, 1)
92
- return self.tr(p + self.linear(p)).permute(1, 2, 0).reshape(b, self.c2, w, h)
93
-
94
-
95
- class Bottleneck(nn.Module):
96
- # Standard bottleneck
97
- def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
98
- super().__init__()
99
- c_ = int(c2 * e) # hidden channels
100
- self.cv1 = Conv(c1, c_, 1, 1)
101
- self.cv2 = Conv(c_, c2, 3, 1, g=g)
102
- self.add = shortcut and c1 == c2
103
-
104
- def forward(self, x):
105
- return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
106
-
107
-
108
- class BottleneckCSP(nn.Module):
109
- # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
110
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
111
- super().__init__()
112
- c_ = int(c2 * e) # hidden channels
113
- self.cv1 = Conv(c1, c_, 1, 1)
114
- self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
115
- self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
116
- self.cv4 = Conv(2 * c_, c2, 1, 1)
117
- self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
118
- self.act = nn.SiLU()
119
- self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
120
-
121
- def forward(self, x):
122
- y1 = self.cv3(self.m(self.cv1(x)))
123
- y2 = self.cv2(x)
124
- return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1))))
125
-
126
-
127
- class C3(nn.Module):
128
- # CSP Bottleneck with 3 convolutions
129
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
130
- super().__init__()
131
- c_ = int(c2 * e) # hidden channels
132
- self.cv1 = Conv(c1, c_, 1, 1)
133
- self.cv2 = Conv(c1, c_, 1, 1)
134
- self.cv3 = Conv(2 * c_, c2, 1) # act=FReLU(c2)
135
- self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
136
- # self.m = nn.Sequential(*(CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)))
137
-
138
- def forward(self, x):
139
- return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
140
-
141
-
142
- class C3TR(C3):
143
- # C3 module with TransformerBlock()
144
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
145
- super().__init__(c1, c2, n, shortcut, g, e)
146
- c_ = int(c2 * e)
147
- self.m = TransformerBlock(c_, c_, 4, n)
148
-
149
-
150
- class C3SPP(C3):
151
- # C3 module with SPP()
152
- def __init__(self, c1, c2, k=(5, 9, 13), n=1, shortcut=True, g=1, e=0.5):
153
- super().__init__(c1, c2, n, shortcut, g, e)
154
- c_ = int(c2 * e)
155
- self.m = SPP(c_, c_, k)
156
-
157
-
158
- class C3Ghost(C3):
159
- # C3 module with GhostBottleneck()
160
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
161
- super().__init__(c1, c2, n, shortcut, g, e)
162
- c_ = int(c2 * e) # hidden channels
163
- self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n)))
164
-
165
-
166
- class SPP(nn.Module):
167
- # Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729
168
- def __init__(self, c1, c2, k=(5, 9, 13)):
169
- super().__init__()
170
- c_ = c1 // 2 # hidden channels
171
- self.cv1 = Conv(c1, c_, 1, 1)
172
- self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
173
- self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
174
-
175
- def forward(self, x):
176
- x = self.cv1(x)
177
- with warnings.catch_warnings():
178
- warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning
179
- return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
180
-
181
-
182
- class SPPF(nn.Module):
183
- # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
184
- def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13))
185
- super().__init__()
186
- c_ = c1 // 2 # hidden channels
187
- self.cv1 = Conv(c1, c_, 1, 1)
188
- self.cv2 = Conv(c_ * 4, c2, 1, 1)
189
- self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
190
-
191
- def forward(self, x):
192
- x = self.cv1(x)
193
- with warnings.catch_warnings():
194
- warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning
195
- y1 = self.m(x)
196
- y2 = self.m(y1)
197
- return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))
198
-
199
-
200
- class Focus(nn.Module):
201
- # Focus wh information into c-space
202
- def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
203
- super().__init__()
204
- self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
205
- # self.contract = Contract(gain=2)
206
-
207
- def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
208
- return self.conv(torch.cat((x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]), 1))
209
- # return self.conv(self.contract(x))
210
-
211
-
212
- class GhostConv(nn.Module):
213
- # Ghost Convolution https://github.com/huawei-noah/ghostnet
214
- def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
215
- super().__init__()
216
- c_ = c2 // 2 # hidden channels
217
- self.cv1 = Conv(c1, c_, k, s, None, g, act)
218
- self.cv2 = Conv(c_, c_, 5, 1, None, c_, act)
219
-
220
- def forward(self, x):
221
- y = self.cv1(x)
222
- return torch.cat((y, self.cv2(y)), 1)
223
-
224
-
225
- class GhostBottleneck(nn.Module):
226
- # Ghost Bottleneck https://github.com/huawei-noah/ghostnet
227
- def __init__(self, c1, c2, k=3, s=1): # ch_in, ch_out, kernel, stride
228
- super().__init__()
229
- c_ = c2 // 2
230
- self.conv = nn.Sequential(GhostConv(c1, c_, 1, 1), # pw
231
- DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
232
- GhostConv(c_, c2, 1, 1, act=False)) # pw-linear
233
- self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False),
234
- Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()
235
-
236
- def forward(self, x):
237
- return self.conv(x) + self.shortcut(x)
238
-
239
-
240
- class Contract(nn.Module):
241
- # Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40)
242
- def __init__(self, gain=2):
243
- super().__init__()
244
- self.gain = gain
245
-
246
- def forward(self, x):
247
- b, c, h, w = x.size() # assert (h / s == 0) and (W / s == 0), 'Indivisible gain'
248
- s = self.gain
249
- x = x.view(b, c, h // s, s, w // s, s) # x(1,64,40,2,40,2)
250
- x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # x(1,2,2,64,40,40)
251
- return x.view(b, c * s * s, h // s, w // s) # x(1,256,40,40)
252
-
253
-
254
- class Expand(nn.Module):
255
- # Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160)
256
- def __init__(self, gain=2):
257
- super().__init__()
258
- self.gain = gain
259
-
260
- def forward(self, x):
261
- b, c, h, w = x.size() # assert C / s ** 2 == 0, 'Indivisible gain'
262
- s = self.gain
263
- x = x.view(b, s, s, c // s ** 2, h, w) # x(1,2,2,16,80,80)
264
- x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # x(1,16,80,2,80,2)
265
- return x.view(b, c // s ** 2, h * s, w * s) # x(1,16,160,160)
266
-
267
-
268
- class Concat(nn.Module):
269
- # Concatenate a list of tensors along dimension
270
- def __init__(self, dimension=1):
271
- super().__init__()
272
- self.d = dimension
273
-
274
- def forward(self, x):
275
- return torch.cat(x, self.d)
276
-
277
-
278
- class DetectMultiBackend(nn.Module):
279
- # YOLOv5 MultiBackend class for python inference on various backends
280
- def __init__(self, weights='yolov5s.pt', device=torch.device('cpu'), dnn=False, data=None, fp16=False):
281
- # Usage:
282
- # PyTorch: weights = *.pt
283
- # TorchScript: *.torchscript
284
- # ONNX Runtime: *.onnx
285
- # ONNX OpenCV DNN: *.onnx with --dnn
286
- # OpenVINO: *.xml
287
- # CoreML: *.mlmodel
288
- # TensorRT: *.engine
289
- # TensorFlow SavedModel: *_saved_model
290
- # TensorFlow GraphDef: *.pb
291
- # TensorFlow Lite: *.tflite
292
- # TensorFlow Edge TPU: *_edgetpu.tflite
293
- from models.experimental import attempt_download, attempt_load # scoped to avoid circular import
294
-
295
- super().__init__()
296
- w = str(weights[0] if isinstance(weights, list) else weights)
297
- pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs = self.model_type(w) # get backend
298
- stride, names = 64, [f'class{i}' for i in range(1000)] # assign defaults
299
- w = attempt_download(w) # download if not local
300
- fp16 &= (pt or jit or onnx or engine) and device.type != 'cpu' # FP16
301
- if data: # data.yaml path (optional)
302
- with open(data, errors='ignore') as f:
303
- names = yaml.safe_load(f)['names'] # class names
304
-
305
- if pt: # PyTorch
306
- model = attempt_load(weights if isinstance(weights, list) else w, map_location=device)
307
- stride = max(int(model.stride.max()), 32) # model stride
308
- names = model.module.names if hasattr(model, 'module') else model.names # get class names
309
- model.half() if fp16 else model.float()
310
- self.model = model # explicitly assign for to(), cpu(), cuda(), half()
311
- elif jit: # TorchScript
312
- LOGGER.info(f'Loading {w} for TorchScript inference...')
313
- extra_files = {'config.txt': ''} # model metadata
314
- model = torch.jit.load(w, _extra_files=extra_files)
315
- model.half() if fp16 else model.float()
316
- if extra_files['config.txt']:
317
- d = json.loads(extra_files['config.txt']) # extra_files dict
318
- stride, names = int(d['stride']), d['names']
319
- elif dnn: # ONNX OpenCV DNN
320
- LOGGER.info(f'Loading {w} for ONNX OpenCV DNN inference...')
321
- check_requirements(('opencv-python>=4.5.4',))
322
- net = cv2.dnn.readNetFromONNX(w)
323
- elif onnx: # ONNX Runtime
324
- LOGGER.info(f'Loading {w} for ONNX Runtime inference...')
325
- cuda = torch.cuda.is_available()
326
- check_requirements(('onnx', 'onnxruntime-gpu' if cuda else 'onnxruntime'))
327
- import onnxruntime
328
- providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if cuda else ['CPUExecutionProvider']
329
- session = onnxruntime.InferenceSession(w, providers=providers)
330
- elif xml: # OpenVINO
331
- LOGGER.info(f'Loading {w} for OpenVINO inference...')
332
- check_requirements(('openvino-dev',)) # requires openvino-dev: https://pypi.org/project/openvino-dev/
333
- import openvino.inference_engine as ie
334
- core = ie.IECore()
335
- if not Path(w).is_file(): # if not *.xml
336
- w = next(Path(w).glob('*.xml')) # get *.xml file from *_openvino_model dir
337
- network = core.read_network(model=w, weights=Path(w).with_suffix('.bin')) # *.xml, *.bin paths
338
- executable_network = core.load_network(network, device_name='CPU', num_requests=1)
339
- elif engine: # TensorRT
340
- LOGGER.info(f'Loading {w} for TensorRT inference...')
341
- import tensorrt as trt # https://developer.nvidia.com/nvidia-tensorrt-download
342
- check_version(trt.__version__, '7.0.0', hard=True) # require tensorrt>=7.0.0
343
- Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr'))
344
- logger = trt.Logger(trt.Logger.INFO)
345
- with open(w, 'rb') as f, trt.Runtime(logger) as runtime:
346
- model = runtime.deserialize_cuda_engine(f.read())
347
- bindings = OrderedDict()
348
- fp16 = False # default updated below
349
- for index in range(model.num_bindings):
350
- name = model.get_binding_name(index)
351
- dtype = trt.nptype(model.get_binding_dtype(index))
352
- shape = tuple(model.get_binding_shape(index))
353
- data = torch.from_numpy(np.empty(shape, dtype=np.dtype(dtype))).to(device)
354
- bindings[name] = Binding(name, dtype, shape, data, int(data.data_ptr()))
355
- if model.binding_is_input(index) and dtype == np.float16:
356
- fp16 = True
357
- binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items())
358
- context = model.create_execution_context()
359
- batch_size = bindings['images'].shape[0]
360
- elif coreml: # CoreML
361
- LOGGER.info(f'Loading {w} for CoreML inference...')
362
- import coremltools as ct
363
- model = ct.models.MLModel(w)
364
- else: # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
365
- if saved_model: # SavedModel
366
- LOGGER.info(f'Loading {w} for TensorFlow SavedModel inference...')
367
- import tensorflow as tf
368
- keras = False # assume TF1 saved_model
369
- model = tf.keras.models.load_model(w) if keras else tf.saved_model.load(w)
370
- elif pb: # GraphDef https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt
371
- LOGGER.info(f'Loading {w} for TensorFlow GraphDef inference...')
372
- import tensorflow as tf
373
-
374
- def wrap_frozen_graph(gd, inputs, outputs):
375
- x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=""), []) # wrapped
376
- ge = x.graph.as_graph_element
377
- return x.prune(tf.nest.map_structure(ge, inputs), tf.nest.map_structure(ge, outputs))
378
-
379
- gd = tf.Graph().as_graph_def() # graph_def
380
- gd.ParseFromString(open(w, 'rb').read())
381
- frozen_func = wrap_frozen_graph(gd, inputs="x:0", outputs="Identity:0")
382
- elif tflite or edgetpu: # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python
383
- try: # https://coral.ai/docs/edgetpu/tflite-python/#update-existing-tf-lite-code-for-the-edge-tpu
384
- from tflite_runtime.interpreter import Interpreter, load_delegate
385
- except ImportError:
386
- import tensorflow as tf
387
- Interpreter, load_delegate = tf.lite.Interpreter, tf.lite.experimental.load_delegate,
388
- if edgetpu: # Edge TPU https://coral.ai/software/#edgetpu-runtime
389
- LOGGER.info(f'Loading {w} for TensorFlow Lite Edge TPU inference...')
390
- delegate = {'Linux': 'libedgetpu.so.1',
391
- 'Darwin': 'libedgetpu.1.dylib',
392
- 'Windows': 'edgetpu.dll'}[platform.system()]
393
- interpreter = Interpreter(model_path=w, experimental_delegates=[load_delegate(delegate)])
394
- else: # Lite
395
- LOGGER.info(f'Loading {w} for TensorFlow Lite inference...')
396
- interpreter = Interpreter(model_path=w) # load TFLite model
397
- interpreter.allocate_tensors() # allocate
398
- input_details = interpreter.get_input_details() # inputs
399
- output_details = interpreter.get_output_details() # outputs
400
- elif tfjs:
401
- raise Exception('ERROR: YOLOv5 TF.js inference is not supported')
402
- self.__dict__.update(locals()) # assign all variables to self
403
-
404
- def forward(self, im, augment=False, visualize=False, val=False):
405
- # YOLOv5 MultiBackend inference
406
- b, ch, h, w = im.shape # batch, channel, height, width
407
- if self.pt or self.jit: # PyTorch
408
- y = self.model(im) if self.jit else self.model(im, augment=augment, visualize=visualize)
409
- return y if val else y[0]
410
- elif self.dnn: # ONNX OpenCV DNN
411
- im = im.cpu().numpy() # torch to numpy
412
- self.net.setInput(im)
413
- y = self.net.forward()
414
- elif self.onnx: # ONNX Runtime
415
- im = im.cpu().numpy() # torch to numpy
416
- y = self.session.run([self.session.get_outputs()[0].name], {self.session.get_inputs()[0].name: im})[0]
417
- elif self.xml: # OpenVINO
418
- im = im.cpu().numpy() # FP32
419
- desc = self.ie.TensorDesc(precision='FP32', dims=im.shape, layout='NCHW') # Tensor Description
420
- request = self.executable_network.requests[0] # inference request
421
- request.set_blob(blob_name='images', blob=self.ie.Blob(desc, im)) # name=next(iter(request.input_blobs))
422
- request.infer()
423
- y = request.output_blobs['output'].buffer # name=next(iter(request.output_blobs))
424
- elif self.engine: # TensorRT
425
- assert im.shape == self.bindings['images'].shape, (im.shape, self.bindings['images'].shape)
426
- self.binding_addrs['images'] = int(im.data_ptr())
427
- self.context.execute_v2(list(self.binding_addrs.values()))
428
- y = self.bindings['output'].data
429
- elif self.coreml: # CoreML
430
- im = im.permute(0, 2, 3, 1).cpu().numpy() # torch BCHW to numpy BHWC shape(1,320,192,3)
431
- im = Image.fromarray((im[0] * 255).astype('uint8'))
432
- # im = im.resize((192, 320), Image.ANTIALIAS)
433
- y = self.model.predict({'image': im}) # coordinates are xywh normalized
434
- if 'confidence' in y:
435
- box = xywh2xyxy(y['coordinates'] * [[w, h, w, h]]) # xyxy pixels
436
- conf, cls = y['confidence'].max(1), y['confidence'].argmax(1).astype(np.float)
437
- y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1)
438
- else:
439
- k = 'var_' + str(sorted(int(k.replace('var_', '')) for k in y)[-1]) # output key
440
- y = y[k] # output
441
- else: # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
442
- im = im.permute(0, 2, 3, 1).cpu().numpy() # torch BCHW to numpy BHWC shape(1,320,192,3)
443
- if self.saved_model: # SavedModel
444
- y = (self.model(im, training=False) if self.keras else self.model(im)).numpy()
445
- elif self.pb: # GraphDef
446
- y = self.frozen_func(x=self.tf.constant(im)).numpy()
447
- else: # Lite or Edge TPU
448
- input, output = self.input_details[0], self.output_details[0]
449
- int8 = input['dtype'] == np.uint8 # is TFLite quantized uint8 model
450
- if int8:
451
- scale, zero_point = input['quantization']
452
- im = (im / scale + zero_point).astype(np.uint8) # de-scale
453
- self.interpreter.set_tensor(input['index'], im)
454
- self.interpreter.invoke()
455
- y = self.interpreter.get_tensor(output['index'])
456
- if int8:
457
- scale, zero_point = output['quantization']
458
- y = (y.astype(np.float32) - zero_point) * scale # re-scale
459
- y[..., :4] *= [w, h, w, h] # xywh normalized to pixels
460
-
461
- if isinstance(y, np.ndarray):
462
- y = torch.tensor(y, device=self.device)
463
- return (y, []) if val else y
464
-
465
- def warmup(self, imgsz=(1, 3, 640, 640)):
466
- # Warmup model by running inference once
467
- if any((self.pt, self.jit, self.onnx, self.engine, self.saved_model, self.pb)): # warmup types
468
- if self.device.type != 'cpu': # only warmup GPU models
469
- im = torch.zeros(*imgsz, dtype=torch.half if self.fp16 else torch.float, device=self.device) # input
470
- for _ in range(2 if self.jit else 1): #
471
- self.forward(im) # warmup
472
-
473
- @staticmethod
474
- def model_type(p='path/to/model.pt'):
475
- # Return model type from model path, i.e. path='path/to/model.onnx' -> type=onnx
476
- from export import export_formats
477
- suffixes = list(export_formats().Suffix) + ['.xml'] # export suffixes
478
- check_suffix(p, suffixes) # checks
479
- p = Path(p).name # eliminate trailing separators
480
- pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, xml2 = (s in p for s in suffixes)
481
- xml |= xml2 # *_openvino_model or *.xml
482
- tflite &= not edgetpu # *.tflite
483
- return pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs
484
-
485
-
486
- class AutoShape(nn.Module):
487
- # YOLOv5 input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
488
- conf = 0.25 # NMS confidence threshold
489
- iou = 0.45 # NMS IoU threshold
490
- agnostic = False # NMS class-agnostic
491
- multi_label = False # NMS multiple labels per box
492
- classes = None # (optional list) filter by class, i.e. = [0, 15, 16] for COCO persons, cats and dogs
493
- max_det = 1000 # maximum number of detections per image
494
- amp = False # Automatic Mixed Precision (AMP) inference
495
-
496
- def __init__(self, model):
497
- super().__init__()
498
- LOGGER.info('Adding AutoShape... ')
499
- copy_attr(self, model, include=('yaml', 'nc', 'hyp', 'names', 'stride', 'abc'), exclude=()) # copy attributes
500
- self.dmb = isinstance(model, DetectMultiBackend) # DetectMultiBackend() instance
501
- self.pt = not self.dmb or model.pt # PyTorch model
502
- self.model = model.eval()
503
-
504
- def _apply(self, fn):
505
- # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
506
- self = super()._apply(fn)
507
- if self.pt:
508
- m = self.model.model.model[-1] if self.dmb else self.model.model[-1] # Detect()
509
- m.stride = fn(m.stride)
510
- m.grid = list(map(fn, m.grid))
511
- if isinstance(m.anchor_grid, list):
512
- m.anchor_grid = list(map(fn, m.anchor_grid))
513
- return self
514
-
515
- @torch.no_grad()
516
- def forward(self, imgs, size=640, augment=False, profile=False):
517
- # Inference from various sources. For height=640, width=1280, RGB images example inputs are:
518
- # file: imgs = 'data/images/zidane.jpg' # str or PosixPath
519
- # URI: = 'https://ultralytics.com/images/zidane.jpg'
520
- # OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(640,1280,3)
521
- # PIL: = Image.open('image.jpg') or ImageGrab.grab() # HWC x(640,1280,3)
522
- # numpy: = np.zeros((640,1280,3)) # HWC
523
- # torch: = torch.zeros(16,3,320,640) # BCHW (scaled to size=640, 0-1 values)
524
- # multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
525
-
526
- t = [time_sync()]
527
- p = next(self.model.parameters()) if self.pt else torch.zeros(1) # for device and type
528
- autocast = self.amp and (p.device.type != 'cpu') # Automatic Mixed Precision (AMP) inference
529
- if isinstance(imgs, torch.Tensor): # torch
530
- with amp.autocast(autocast):
531
- return self.model(imgs.to(p.device).type_as(p), augment, profile) # inference
532
-
533
- # Pre-process
534
- n, imgs = (len(imgs), imgs) if isinstance(imgs, list) else (1, [imgs]) # number of images, list of images
535
- shape0, shape1, files = [], [], [] # image and inference shapes, filenames
536
- for i, im in enumerate(imgs):
537
- f = f'image{i}' # filename
538
- if isinstance(im, (str, Path)): # filename or uri
539
- im, f = Image.open(requests.get(im, stream=True).raw if str(im).startswith('http') else im), im
540
- im = np.asarray(exif_transpose(im))
541
- elif isinstance(im, Image.Image): # PIL Image
542
- im, f = np.asarray(exif_transpose(im)), getattr(im, 'filename', f) or f
543
- files.append(Path(f).with_suffix('.jpg').name)
544
- if im.shape[0] < 5: # image in CHW
545
- im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1)
546
- im = im[..., :3] if im.ndim == 3 else np.tile(im[..., None], 3) # enforce 3ch input
547
- s = im.shape[:2] # HWC
548
- shape0.append(s) # image shape
549
- g = (size / max(s)) # gain
550
- shape1.append([y * g for y in s])
551
- imgs[i] = im if im.data.contiguous else np.ascontiguousarray(im) # update
552
- shape1 = [make_divisible(x, self.stride) if self.pt else size for x in np.array(shape1).max(0)] # inf shape
553
- x = [letterbox(im, shape1, auto=False)[0] for im in imgs] # pad
554
- x = np.ascontiguousarray(np.array(x).transpose((0, 3, 1, 2))) # stack and BHWC to BCHW
555
- x = torch.from_numpy(x).to(p.device).type_as(p) / 255 # uint8 to fp16/32
556
- t.append(time_sync())
557
-
558
- with amp.autocast(autocast):
559
- # Inference
560
- y = self.model(x, augment, profile) # forward
561
- t.append(time_sync())
562
-
563
- # Post-process
564
- y = non_max_suppression(y if self.dmb else y[0], self.conf, self.iou, self.classes, self.agnostic,
565
- self.multi_label, max_det=self.max_det) # NMS
566
- for i in range(n):
567
- scale_coords(shape1, y[i][:, :4], shape0[i])
568
-
569
- t.append(time_sync())
570
- return Detections(imgs, y, files, t, self.names, x.shape)
571
-
572
-
573
- class Detections:
574
- # YOLOv5 detections class for inference results
575
- def __init__(self, imgs, pred, files, times=(0, 0, 0, 0), names=None, shape=None):
576
- super().__init__()
577
- d = pred[0].device # device
578
- gn = [torch.tensor([*(im.shape[i] for i in [1, 0, 1, 0]), 1, 1], device=d) for im in imgs] # normalizations
579
- self.imgs = imgs # list of images as numpy arrays
580
- self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)
581
- self.names = names # class names
582
- self.files = files # image filenames
583
- self.times = times # profiling times
584
- self.xyxy = pred # xyxy pixels
585
- self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels
586
- self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized
587
- self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized
588
- self.n = len(self.pred) # number of images (batch size)
589
- self.t = tuple((times[i + 1] - times[i]) * 1000 / self.n for i in range(3)) # timestamps (ms)
590
- self.s = shape # inference BCHW shape
591
-
592
- def display(self, pprint=False, show=False, save=False, crop=False, render=False, save_dir=Path('')):
593
- crops = []
594
- for i, (im, pred) in enumerate(zip(self.imgs, self.pred)):
595
- s = f'image {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} ' # string
596
- if pred.shape[0]:
597
- for c in pred[:, -1].unique():
598
- n = (pred[:, -1] == c).sum() # detections per class
599
- s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string
600
- if show or save or render or crop:
601
- annotator = Annotator(im, example=str(self.names))
602
- for *box, conf, cls in reversed(pred): # xyxy, confidence, class
603
- label = f'{self.names[int(cls)]} {conf:.2f}'
604
- if crop:
605
- file = save_dir / 'crops' / self.names[int(cls)] / self.files[i] if save else None
606
- crops.append({'box': box, 'conf': conf, 'cls': cls, 'label': label,
607
- 'im': save_one_box(box, im, file=file, save=save)})
608
- else: # all others
609
- annotator.box_label(box, label, color=colors(cls))
610
- im = annotator.im
611
- else:
612
- s += '(no detections)'
613
-
614
- im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im # from np
615
- if pprint:
616
- LOGGER.info(s.rstrip(', '))
617
- if show:
618
- im.show(self.files[i]) # show
619
- if save:
620
- f = self.files[i]
621
- im.save(save_dir / f) # save
622
- if i == self.n - 1:
623
- LOGGER.info(f"Saved {self.n} image{'s' * (self.n > 1)} to {colorstr('bold', save_dir)}")
624
- if render:
625
- self.imgs[i] = np.asarray(im)
626
- if crop:
627
- if save:
628
- LOGGER.info(f'Saved results to {save_dir}\n')
629
- return crops
630
-
631
- def print(self):
632
- self.display(pprint=True) # print results
633
- LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {tuple(self.s)}' %
634
- self.t)
635
-
636
- def show(self):
637
- self.display(show=True) # show results
638
-
639
- def save(self, save_dir='runs/detect/exp'):
640
- save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True) # increment save_dir
641
- self.display(save=True, save_dir=save_dir) # save results
642
-
643
- def crop(self, save=True, save_dir='runs/detect/exp'):
644
- save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True) if save else None
645
- return self.display(crop=True, save=save, save_dir=save_dir) # crop results
646
-
647
- def render(self):
648
- self.display(render=True) # render results
649
- return self.imgs
650
-
651
- def pandas(self):
652
- # return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0])
653
- new = copy(self) # return copy
654
- ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name' # xyxy columns
655
- cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name' # xywh columns
656
- for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]):
657
- a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)] # update
658
- setattr(new, k, [pd.DataFrame(x, columns=c) for x in a])
659
- return new
660
-
661
- def tolist(self):
662
- # return a list of Detections objects, i.e. 'for result in results.tolist():'
663
- r = range(self.n) # iterable
664
- x = [Detections([self.imgs[i]], [self.pred[i]], [self.files[i]], self.times, self.names, self.s) for i in r]
665
- # for d in x:
666
- # for k in ['imgs', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']:
667
- # setattr(d, k, getattr(d, k)[0]) # pop out of list
668
- return x
669
-
670
- def __len__(self):
671
- return self.n
672
-
673
-
674
- class Classify(nn.Module):
675
- # Classification head, i.e. x(b,c1,20,20) to x(b,c2)
676
- def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups
677
- super().__init__()
678
- self.aap = nn.AdaptiveAvgPool2d(1) # to x(b,c1,1,1)
679
- self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g) # to x(b,c2,1,1)
680
- self.flat = nn.Flatten()
681
-
682
- def forward(self, x):
683
- z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else [x])], 1) # cat if list
684
- return self.flat(self.conv(z)) # flatten to x(b,c2)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ultralytics/yolov5/models/experimental.py DELETED
@@ -1,121 +0,0 @@
1
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
- """
3
- Experimental modules
4
- """
5
- import math
6
-
7
- import numpy as np
8
- import torch
9
- import torch.nn as nn
10
-
11
- from models.common import Conv
12
- from utils.downloads import attempt_download
13
-
14
-
15
- class CrossConv(nn.Module):
16
- # Cross Convolution Downsample
17
- def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
18
- # ch_in, ch_out, kernel, stride, groups, expansion, shortcut
19
- super().__init__()
20
- c_ = int(c2 * e) # hidden channels
21
- self.cv1 = Conv(c1, c_, (1, k), (1, s))
22
- self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
23
- self.add = shortcut and c1 == c2
24
-
25
- def forward(self, x):
26
- return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
27
-
28
-
29
- class Sum(nn.Module):
30
- # Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
31
- def __init__(self, n, weight=False): # n: number of inputs
32
- super().__init__()
33
- self.weight = weight # apply weights boolean
34
- self.iter = range(n - 1) # iter object
35
- if weight:
36
- self.w = nn.Parameter(-torch.arange(1.0, n) / 2, requires_grad=True) # layer weights
37
-
38
- def forward(self, x):
39
- y = x[0] # no weight
40
- if self.weight:
41
- w = torch.sigmoid(self.w) * 2
42
- for i in self.iter:
43
- y = y + x[i + 1] * w[i]
44
- else:
45
- for i in self.iter:
46
- y = y + x[i + 1]
47
- return y
48
-
49
-
50
- class MixConv2d(nn.Module):
51
- # Mixed Depth-wise Conv https://arxiv.org/abs/1907.09595
52
- def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True): # ch_in, ch_out, kernel, stride, ch_strategy
53
- super().__init__()
54
- n = len(k) # number of convolutions
55
- if equal_ch: # equal c_ per group
56
- i = torch.linspace(0, n - 1E-6, c2).floor() # c2 indices
57
- c_ = [(i == g).sum() for g in range(n)] # intermediate channels
58
- else: # equal weight.numel() per group
59
- b = [c2] + [0] * n
60
- a = np.eye(n + 1, n, k=-1)
61
- a -= np.roll(a, 1, axis=1)
62
- a *= np.array(k) ** 2
63
- a[0] = 1
64
- c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
65
-
66
- self.m = nn.ModuleList(
67
- [nn.Conv2d(c1, int(c_), k, s, k // 2, groups=math.gcd(c1, int(c_)), bias=False) for k, c_ in zip(k, c_)])
68
- self.bn = nn.BatchNorm2d(c2)
69
- self.act = nn.SiLU()
70
-
71
- def forward(self, x):
72
- return self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
73
-
74
-
75
- class Ensemble(nn.ModuleList):
76
- # Ensemble of models
77
- def __init__(self):
78
- super().__init__()
79
-
80
- def forward(self, x, augment=False, profile=False, visualize=False):
81
- y = []
82
- for module in self:
83
- y.append(module(x, augment, profile, visualize)[0])
84
- # y = torch.stack(y).max(0)[0] # max ensemble
85
- # y = torch.stack(y).mean(0) # mean ensemble
86
- y = torch.cat(y, 1) # nms ensemble
87
- return y, None # inference, train output
88
-
89
-
90
- def attempt_load(weights, map_location=None, inplace=True, fuse=True):
91
- from models.yolo import Detect, Model
92
-
93
- # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
94
- model = Ensemble()
95
- for w in weights if isinstance(weights, list) else [weights]:
96
- ckpt = torch.load(attempt_download(w), map_location=map_location) # load
97
- ckpt = (ckpt.get('ema') or ckpt['model']).float() # FP32 model
98
- model.append(ckpt.fuse().eval() if fuse else ckpt.eval()) # fused or un-fused model in eval mode
99
-
100
- # Compatibility updates
101
- for m in model.modules():
102
- t = type(m)
103
- if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model):
104
- m.inplace = inplace # torch 1.7.0 compatibility
105
- if t is Detect:
106
- if not isinstance(m.anchor_grid, list): # new Detect Layer compatibility
107
- delattr(m, 'anchor_grid')
108
- setattr(m, 'anchor_grid', [torch.zeros(1)] * m.nl)
109
- elif t is Conv:
110
- m._non_persistent_buffers_set = set() # torch 1.6.0 compatibility
111
- elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'):
112
- m.recompute_scale_factor = None # torch 1.11.0 compatibility
113
-
114
- if len(model) == 1:
115
- return model[-1] # return model
116
- else:
117
- print(f'Ensemble created with {weights}\n')
118
- for k in ['names']:
119
- setattr(model, k, getattr(model[-1], k))
120
- model.stride = model[torch.argmax(torch.tensor([m.stride.max() for m in model])).int()].stride # max stride
121
- return model # return ensemble
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ultralytics/yolov5/models/hub/anchors.yaml DELETED
@@ -1,59 +0,0 @@
1
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
- # Default anchors for COCO data
3
-
4
-
5
- # P5 -------------------------------------------------------------------------------------------------------------------
6
- # P5-640:
7
- anchors_p5_640:
8
- - [10,13, 16,30, 33,23] # P3/8
9
- - [30,61, 62,45, 59,119] # P4/16
10
- - [116,90, 156,198, 373,326] # P5/32
11
-
12
-
13
- # P6 -------------------------------------------------------------------------------------------------------------------
14
- # P6-640: thr=0.25: 0.9964 BPR, 5.54 anchors past thr, n=12, img_size=640, metric_all=0.281/0.716-mean/best, past_thr=0.469-mean: 9,11, 21,19, 17,41, 43,32, 39,70, 86,64, 65,131, 134,130, 120,265, 282,180, 247,354, 512,387
15
- anchors_p6_640:
16
- - [9,11, 21,19, 17,41] # P3/8
17
- - [43,32, 39,70, 86,64] # P4/16
18
- - [65,131, 134,130, 120,265] # P5/32
19
- - [282,180, 247,354, 512,387] # P6/64
20
-
21
- # P6-1280: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1280, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 19,27, 44,40, 38,94, 96,68, 86,152, 180,137, 140,301, 303,264, 238,542, 436,615, 739,380, 925,792
22
- anchors_p6_1280:
23
- - [19,27, 44,40, 38,94] # P3/8
24
- - [96,68, 86,152, 180,137] # P4/16
25
- - [140,301, 303,264, 238,542] # P5/32
26
- - [436,615, 739,380, 925,792] # P6/64
27
-
28
- # P6-1920: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1920, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 28,41, 67,59, 57,141, 144,103, 129,227, 270,205, 209,452, 455,396, 358,812, 653,922, 1109,570, 1387,1187
29
- anchors_p6_1920:
30
- - [28,41, 67,59, 57,141] # P3/8
31
- - [144,103, 129,227, 270,205] # P4/16
32
- - [209,452, 455,396, 358,812] # P5/32
33
- - [653,922, 1109,570, 1387,1187] # P6/64
34
-
35
-
36
- # P7 -------------------------------------------------------------------------------------------------------------------
37
- # P7-640: thr=0.25: 0.9962 BPR, 6.76 anchors past thr, n=15, img_size=640, metric_all=0.275/0.733-mean/best, past_thr=0.466-mean: 11,11, 13,30, 29,20, 30,46, 61,38, 39,92, 78,80, 146,66, 79,163, 149,150, 321,143, 157,303, 257,402, 359,290, 524,372
38
- anchors_p7_640:
39
- - [11,11, 13,30, 29,20] # P3/8
40
- - [30,46, 61,38, 39,92] # P4/16
41
- - [78,80, 146,66, 79,163] # P5/32
42
- - [149,150, 321,143, 157,303] # P6/64
43
- - [257,402, 359,290, 524,372] # P7/128
44
-
45
- # P7-1280: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1280, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 19,22, 54,36, 32,77, 70,83, 138,71, 75,173, 165,159, 148,334, 375,151, 334,317, 251,626, 499,474, 750,326, 534,814, 1079,818
46
- anchors_p7_1280:
47
- - [19,22, 54,36, 32,77] # P3/8
48
- - [70,83, 138,71, 75,173] # P4/16
49
- - [165,159, 148,334, 375,151] # P5/32
50
- - [334,317, 251,626, 499,474] # P6/64
51
- - [750,326, 534,814, 1079,818] # P7/128
52
-
53
- # P7-1920: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1920, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 29,34, 81,55, 47,115, 105,124, 207,107, 113,259, 247,238, 222,500, 563,227, 501,476, 376,939, 749,711, 1126,489, 801,1222, 1618,1227
54
- anchors_p7_1920:
55
- - [29,34, 81,55, 47,115] # P3/8
56
- - [105,124, 207,107, 113,259] # P4/16
57
- - [247,238, 222,500, 563,227] # P5/32
58
- - [501,476, 376,939, 749,711] # P6/64
59
- - [1126,489, 801,1222, 1618,1227] # P7/128
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ultralytics/yolov5/models/hub/yolov3-spp.yaml DELETED
@@ -1,51 +0,0 @@
1
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
-
3
- # Parameters
4
- nc: 80 # number of classes
5
- depth_multiple: 1.0 # model depth multiple
6
- width_multiple: 1.0 # layer channel multiple
7
- anchors:
8
- - [10,13, 16,30, 33,23] # P3/8
9
- - [30,61, 62,45, 59,119] # P4/16
10
- - [116,90, 156,198, 373,326] # P5/32
11
-
12
- # darknet53 backbone
13
- backbone:
14
- # [from, number, module, args]
15
- [[-1, 1, Conv, [32, 3, 1]], # 0
16
- [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
17
- [-1, 1, Bottleneck, [64]],
18
- [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
19
- [-1, 2, Bottleneck, [128]],
20
- [-1, 1, Conv, [256, 3, 2]], # 5-P3/8
21
- [-1, 8, Bottleneck, [256]],
22
- [-1, 1, Conv, [512, 3, 2]], # 7-P4/16
23
- [-1, 8, Bottleneck, [512]],
24
- [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
25
- [-1, 4, Bottleneck, [1024]], # 10
26
- ]
27
-
28
- # YOLOv3-SPP head
29
- head:
30
- [[-1, 1, Bottleneck, [1024, False]],
31
- [-1, 1, SPP, [512, [5, 9, 13]]],
32
- [-1, 1, Conv, [1024, 3, 1]],
33
- [-1, 1, Conv, [512, 1, 1]],
34
- [-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
35
-
36
- [-2, 1, Conv, [256, 1, 1]],
37
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
38
- [[-1, 8], 1, Concat, [1]], # cat backbone P4
39
- [-1, 1, Bottleneck, [512, False]],
40
- [-1, 1, Bottleneck, [512, False]],
41
- [-1, 1, Conv, [256, 1, 1]],
42
- [-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
43
-
44
- [-2, 1, Conv, [128, 1, 1]],
45
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
46
- [[-1, 6], 1, Concat, [1]], # cat backbone P3
47
- [-1, 1, Bottleneck, [256, False]],
48
- [-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
49
-
50
- [[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
51
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ultralytics/yolov5/models/hub/yolov3-tiny.yaml DELETED
@@ -1,41 +0,0 @@
1
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
-
3
- # Parameters
4
- nc: 80 # number of classes
5
- depth_multiple: 1.0 # model depth multiple
6
- width_multiple: 1.0 # layer channel multiple
7
- anchors:
8
- - [10,14, 23,27, 37,58] # P4/16
9
- - [81,82, 135,169, 344,319] # P5/32
10
-
11
- # YOLOv3-tiny backbone
12
- backbone:
13
- # [from, number, module, args]
14
- [[-1, 1, Conv, [16, 3, 1]], # 0
15
- [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 1-P1/2
16
- [-1, 1, Conv, [32, 3, 1]],
17
- [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 3-P2/4
18
- [-1, 1, Conv, [64, 3, 1]],
19
- [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 5-P3/8
20
- [-1, 1, Conv, [128, 3, 1]],
21
- [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 7-P4/16
22
- [-1, 1, Conv, [256, 3, 1]],
23
- [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 9-P5/32
24
- [-1, 1, Conv, [512, 3, 1]],
25
- [-1, 1, nn.ZeroPad2d, [[0, 1, 0, 1]]], # 11
26
- [-1, 1, nn.MaxPool2d, [2, 1, 0]], # 12
27
- ]
28
-
29
- # YOLOv3-tiny head
30
- head:
31
- [[-1, 1, Conv, [1024, 3, 1]],
32
- [-1, 1, Conv, [256, 1, 1]],
33
- [-1, 1, Conv, [512, 3, 1]], # 15 (P5/32-large)
34
-
35
- [-2, 1, Conv, [128, 1, 1]],
36
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
37
- [[-1, 8], 1, Concat, [1]], # cat backbone P4
38
- [-1, 1, Conv, [256, 3, 1]], # 19 (P4/16-medium)
39
-
40
- [[19, 15], 1, Detect, [nc, anchors]], # Detect(P4, P5)
41
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ultralytics/yolov5/models/hub/yolov3.yaml DELETED
@@ -1,51 +0,0 @@
1
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
-
3
- # Parameters
4
- nc: 80 # number of classes
5
- depth_multiple: 1.0 # model depth multiple
6
- width_multiple: 1.0 # layer channel multiple
7
- anchors:
8
- - [10,13, 16,30, 33,23] # P3/8
9
- - [30,61, 62,45, 59,119] # P4/16
10
- - [116,90, 156,198, 373,326] # P5/32
11
-
12
- # darknet53 backbone
13
- backbone:
14
- # [from, number, module, args]
15
- [[-1, 1, Conv, [32, 3, 1]], # 0
16
- [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
17
- [-1, 1, Bottleneck, [64]],
18
- [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
19
- [-1, 2, Bottleneck, [128]],
20
- [-1, 1, Conv, [256, 3, 2]], # 5-P3/8
21
- [-1, 8, Bottleneck, [256]],
22
- [-1, 1, Conv, [512, 3, 2]], # 7-P4/16
23
- [-1, 8, Bottleneck, [512]],
24
- [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
25
- [-1, 4, Bottleneck, [1024]], # 10
26
- ]
27
-
28
- # YOLOv3 head
29
- head:
30
- [[-1, 1, Bottleneck, [1024, False]],
31
- [-1, 1, Conv, [512, 1, 1]],
32
- [-1, 1, Conv, [1024, 3, 1]],
33
- [-1, 1, Conv, [512, 1, 1]],
34
- [-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
35
-
36
- [-2, 1, Conv, [256, 1, 1]],
37
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
38
- [[-1, 8], 1, Concat, [1]], # cat backbone P4
39
- [-1, 1, Bottleneck, [512, False]],
40
- [-1, 1, Bottleneck, [512, False]],
41
- [-1, 1, Conv, [256, 1, 1]],
42
- [-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
43
-
44
- [-2, 1, Conv, [128, 1, 1]],
45
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
46
- [[-1, 6], 1, Concat, [1]], # cat backbone P3
47
- [-1, 1, Bottleneck, [256, False]],
48
- [-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
49
-
50
- [[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
51
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ultralytics/yolov5/models/hub/yolov5-bifpn.yaml DELETED
@@ -1,48 +0,0 @@
1
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
-
3
- # Parameters
4
- nc: 80 # number of classes
5
- depth_multiple: 1.0 # model depth multiple
6
- width_multiple: 1.0 # layer channel multiple
7
- anchors:
8
- - [10,13, 16,30, 33,23] # P3/8
9
- - [30,61, 62,45, 59,119] # P4/16
10
- - [116,90, 156,198, 373,326] # P5/32
11
-
12
- # YOLOv5 v6.0 backbone
13
- backbone:
14
- # [from, number, module, args]
15
- [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
16
- [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17
- [-1, 3, C3, [128]],
18
- [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19
- [-1, 6, C3, [256]],
20
- [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21
- [-1, 9, C3, [512]],
22
- [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23
- [-1, 3, C3, [1024]],
24
- [-1, 1, SPPF, [1024, 5]], # 9
25
- ]
26
-
27
- # YOLOv5 v6.0 BiFPN head
28
- head:
29
- [[-1, 1, Conv, [512, 1, 1]],
30
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31
- [[-1, 6], 1, Concat, [1]], # cat backbone P4
32
- [-1, 3, C3, [512, False]], # 13
33
-
34
- [-1, 1, Conv, [256, 1, 1]],
35
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36
- [[-1, 4], 1, Concat, [1]], # cat backbone P3
37
- [-1, 3, C3, [256, False]], # 17 (P3/8-small)
38
-
39
- [-1, 1, Conv, [256, 3, 2]],
40
- [[-1, 14, 6], 1, Concat, [1]], # cat P4 <--- BiFPN change
41
- [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
42
-
43
- [-1, 1, Conv, [512, 3, 2]],
44
- [[-1, 10], 1, Concat, [1]], # cat head P5
45
- [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
46
-
47
- [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ultralytics/yolov5/models/hub/yolov5-fpn.yaml DELETED
@@ -1,42 +0,0 @@
1
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
-
3
- # Parameters
4
- nc: 80 # number of classes
5
- depth_multiple: 1.0 # model depth multiple
6
- width_multiple: 1.0 # layer channel multiple
7
- anchors:
8
- - [10,13, 16,30, 33,23] # P3/8
9
- - [30,61, 62,45, 59,119] # P4/16
10
- - [116,90, 156,198, 373,326] # P5/32
11
-
12
- # YOLOv5 v6.0 backbone
13
- backbone:
14
- # [from, number, module, args]
15
- [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
16
- [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17
- [-1, 3, C3, [128]],
18
- [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19
- [-1, 6, C3, [256]],
20
- [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21
- [-1, 9, C3, [512]],
22
- [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23
- [-1, 3, C3, [1024]],
24
- [-1, 1, SPPF, [1024, 5]], # 9
25
- ]
26
-
27
- # YOLOv5 v6.0 FPN head
28
- head:
29
- [[-1, 3, C3, [1024, False]], # 10 (P5/32-large)
30
-
31
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
32
- [[-1, 6], 1, Concat, [1]], # cat backbone P4
33
- [-1, 1, Conv, [512, 1, 1]],
34
- [-1, 3, C3, [512, False]], # 14 (P4/16-medium)
35
-
36
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
37
- [[-1, 4], 1, Concat, [1]], # cat backbone P3
38
- [-1, 1, Conv, [256, 1, 1]],
39
- [-1, 3, C3, [256, False]], # 18 (P3/8-small)
40
-
41
- [[18, 14, 10], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
42
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ultralytics/yolov5/models/hub/yolov5-p2.yaml DELETED
@@ -1,54 +0,0 @@
1
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
-
3
- # Parameters
4
- nc: 80 # number of classes
5
- depth_multiple: 1.0 # model depth multiple
6
- width_multiple: 1.0 # layer channel multiple
7
- anchors: 3 # AutoAnchor evolves 3 anchors per P output layer
8
-
9
- # YOLOv5 v6.0 backbone
10
- backbone:
11
- # [from, number, module, args]
12
- [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
13
- [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
14
- [-1, 3, C3, [128]],
15
- [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
16
- [-1, 6, C3, [256]],
17
- [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
18
- [-1, 9, C3, [512]],
19
- [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
20
- [-1, 3, C3, [1024]],
21
- [-1, 1, SPPF, [1024, 5]], # 9
22
- ]
23
-
24
- # YOLOv5 v6.0 head with (P2, P3, P4, P5) outputs
25
- head:
26
- [[-1, 1, Conv, [512, 1, 1]],
27
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
28
- [[-1, 6], 1, Concat, [1]], # cat backbone P4
29
- [-1, 3, C3, [512, False]], # 13
30
-
31
- [-1, 1, Conv, [256, 1, 1]],
32
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
33
- [[-1, 4], 1, Concat, [1]], # cat backbone P3
34
- [-1, 3, C3, [256, False]], # 17 (P3/8-small)
35
-
36
- [-1, 1, Conv, [128, 1, 1]],
37
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
38
- [[-1, 2], 1, Concat, [1]], # cat backbone P2
39
- [-1, 1, C3, [128, False]], # 21 (P2/4-xsmall)
40
-
41
- [-1, 1, Conv, [128, 3, 2]],
42
- [[-1, 18], 1, Concat, [1]], # cat head P3
43
- [-1, 3, C3, [256, False]], # 24 (P3/8-small)
44
-
45
- [-1, 1, Conv, [256, 3, 2]],
46
- [[-1, 14], 1, Concat, [1]], # cat head P4
47
- [-1, 3, C3, [512, False]], # 27 (P4/16-medium)
48
-
49
- [-1, 1, Conv, [512, 3, 2]],
50
- [[-1, 10], 1, Concat, [1]], # cat head P5
51
- [-1, 3, C3, [1024, False]], # 30 (P5/32-large)
52
-
53
- [[21, 24, 27, 30], 1, Detect, [nc, anchors]], # Detect(P2, P3, P4, P5)
54
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ultralytics/yolov5/models/hub/yolov5-p34.yaml DELETED
@@ -1,41 +0,0 @@
1
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
-
3
- # Parameters
4
- nc: 80 # number of classes
5
- depth_multiple: 0.33 # model depth multiple
6
- width_multiple: 0.50 # layer channel multiple
7
- anchors: 3 # AutoAnchor evolves 3 anchors per P output layer
8
-
9
- # YOLOv5 v6.0 backbone
10
- backbone:
11
- # [from, number, module, args]
12
- [ [ -1, 1, Conv, [ 64, 6, 2, 2 ] ], # 0-P1/2
13
- [ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4
14
- [ -1, 3, C3, [ 128 ] ],
15
- [ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8
16
- [ -1, 6, C3, [ 256 ] ],
17
- [ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16
18
- [ -1, 9, C3, [ 512 ] ],
19
- [ -1, 1, Conv, [ 1024, 3, 2 ] ], # 7-P5/32
20
- [ -1, 3, C3, [ 1024 ] ],
21
- [ -1, 1, SPPF, [ 1024, 5 ] ], # 9
22
- ]
23
-
24
- # YOLOv5 v6.0 head with (P3, P4) outputs
25
- head:
26
- [ [ -1, 1, Conv, [ 512, 1, 1 ] ],
27
- [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
28
- [ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4
29
- [ -1, 3, C3, [ 512, False ] ], # 13
30
-
31
- [ -1, 1, Conv, [ 256, 1, 1 ] ],
32
- [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
33
- [ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3
34
- [ -1, 3, C3, [ 256, False ] ], # 17 (P3/8-small)
35
-
36
- [ -1, 1, Conv, [ 256, 3, 2 ] ],
37
- [ [ -1, 14 ], 1, Concat, [ 1 ] ], # cat head P4
38
- [ -1, 3, C3, [ 512, False ] ], # 20 (P4/16-medium)
39
-
40
- [ [ 17, 20 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4)
41
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ultralytics/yolov5/models/hub/yolov5-p6.yaml DELETED
@@ -1,56 +0,0 @@
1
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
-
3
- # Parameters
4
- nc: 80 # number of classes
5
- depth_multiple: 1.0 # model depth multiple
6
- width_multiple: 1.0 # layer channel multiple
7
- anchors: 3 # AutoAnchor evolves 3 anchors per P output layer
8
-
9
- # YOLOv5 v6.0 backbone
10
- backbone:
11
- # [from, number, module, args]
12
- [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
13
- [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
14
- [-1, 3, C3, [128]],
15
- [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
16
- [-1, 6, C3, [256]],
17
- [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
18
- [-1, 9, C3, [512]],
19
- [-1, 1, Conv, [768, 3, 2]], # 7-P5/32
20
- [-1, 3, C3, [768]],
21
- [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
22
- [-1, 3, C3, [1024]],
23
- [-1, 1, SPPF, [1024, 5]], # 11
24
- ]
25
-
26
- # YOLOv5 v6.0 head with (P3, P4, P5, P6) outputs
27
- head:
28
- [[-1, 1, Conv, [768, 1, 1]],
29
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
30
- [[-1, 8], 1, Concat, [1]], # cat backbone P5
31
- [-1, 3, C3, [768, False]], # 15
32
-
33
- [-1, 1, Conv, [512, 1, 1]],
34
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
35
- [[-1, 6], 1, Concat, [1]], # cat backbone P4
36
- [-1, 3, C3, [512, False]], # 19
37
-
38
- [-1, 1, Conv, [256, 1, 1]],
39
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
40
- [[-1, 4], 1, Concat, [1]], # cat backbone P3
41
- [-1, 3, C3, [256, False]], # 23 (P3/8-small)
42
-
43
- [-1, 1, Conv, [256, 3, 2]],
44
- [[-1, 20], 1, Concat, [1]], # cat head P4
45
- [-1, 3, C3, [512, False]], # 26 (P4/16-medium)
46
-
47
- [-1, 1, Conv, [512, 3, 2]],
48
- [[-1, 16], 1, Concat, [1]], # cat head P5
49
- [-1, 3, C3, [768, False]], # 29 (P5/32-large)
50
-
51
- [-1, 1, Conv, [768, 3, 2]],
52
- [[-1, 12], 1, Concat, [1]], # cat head P6
53
- [-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
54
-
55
- [[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
56
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ultralytics/yolov5/models/hub/yolov5-p7.yaml DELETED
@@ -1,67 +0,0 @@
1
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
-
3
- # Parameters
4
- nc: 80 # number of classes
5
- depth_multiple: 1.0 # model depth multiple
6
- width_multiple: 1.0 # layer channel multiple
7
- anchors: 3 # AutoAnchor evolves 3 anchors per P output layer
8
-
9
- # YOLOv5 v6.0 backbone
10
- backbone:
11
- # [from, number, module, args]
12
- [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
13
- [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
14
- [-1, 3, C3, [128]],
15
- [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
16
- [-1, 6, C3, [256]],
17
- [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
18
- [-1, 9, C3, [512]],
19
- [-1, 1, Conv, [768, 3, 2]], # 7-P5/32
20
- [-1, 3, C3, [768]],
21
- [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
22
- [-1, 3, C3, [1024]],
23
- [-1, 1, Conv, [1280, 3, 2]], # 11-P7/128
24
- [-1, 3, C3, [1280]],
25
- [-1, 1, SPPF, [1280, 5]], # 13
26
- ]
27
-
28
- # YOLOv5 v6.0 head with (P3, P4, P5, P6, P7) outputs
29
- head:
30
- [[-1, 1, Conv, [1024, 1, 1]],
31
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
32
- [[-1, 10], 1, Concat, [1]], # cat backbone P6
33
- [-1, 3, C3, [1024, False]], # 17
34
-
35
- [-1, 1, Conv, [768, 1, 1]],
36
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
37
- [[-1, 8], 1, Concat, [1]], # cat backbone P5
38
- [-1, 3, C3, [768, False]], # 21
39
-
40
- [-1, 1, Conv, [512, 1, 1]],
41
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
42
- [[-1, 6], 1, Concat, [1]], # cat backbone P4
43
- [-1, 3, C3, [512, False]], # 25
44
-
45
- [-1, 1, Conv, [256, 1, 1]],
46
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
47
- [[-1, 4], 1, Concat, [1]], # cat backbone P3
48
- [-1, 3, C3, [256, False]], # 29 (P3/8-small)
49
-
50
- [-1, 1, Conv, [256, 3, 2]],
51
- [[-1, 26], 1, Concat, [1]], # cat head P4
52
- [-1, 3, C3, [512, False]], # 32 (P4/16-medium)
53
-
54
- [-1, 1, Conv, [512, 3, 2]],
55
- [[-1, 22], 1, Concat, [1]], # cat head P5
56
- [-1, 3, C3, [768, False]], # 35 (P5/32-large)
57
-
58
- [-1, 1, Conv, [768, 3, 2]],
59
- [[-1, 18], 1, Concat, [1]], # cat head P6
60
- [-1, 3, C3, [1024, False]], # 38 (P6/64-xlarge)
61
-
62
- [-1, 1, Conv, [1024, 3, 2]],
63
- [[-1, 14], 1, Concat, [1]], # cat head P7
64
- [-1, 3, C3, [1280, False]], # 41 (P7/128-xxlarge)
65
-
66
- [[29, 32, 35, 38, 41], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6, P7)
67
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ultralytics/yolov5/models/hub/yolov5-panet.yaml DELETED
@@ -1,48 +0,0 @@
1
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
-
3
- # Parameters
4
- nc: 80 # number of classes
5
- depth_multiple: 1.0 # model depth multiple
6
- width_multiple: 1.0 # layer channel multiple
7
- anchors:
8
- - [10,13, 16,30, 33,23] # P3/8
9
- - [30,61, 62,45, 59,119] # P4/16
10
- - [116,90, 156,198, 373,326] # P5/32
11
-
12
- # YOLOv5 v6.0 backbone
13
- backbone:
14
- # [from, number, module, args]
15
- [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
16
- [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17
- [-1, 3, C3, [128]],
18
- [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19
- [-1, 6, C3, [256]],
20
- [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21
- [-1, 9, C3, [512]],
22
- [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23
- [-1, 3, C3, [1024]],
24
- [-1, 1, SPPF, [1024, 5]], # 9
25
- ]
26
-
27
- # YOLOv5 v6.0 PANet head
28
- head:
29
- [[-1, 1, Conv, [512, 1, 1]],
30
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31
- [[-1, 6], 1, Concat, [1]], # cat backbone P4
32
- [-1, 3, C3, [512, False]], # 13
33
-
34
- [-1, 1, Conv, [256, 1, 1]],
35
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36
- [[-1, 4], 1, Concat, [1]], # cat backbone P3
37
- [-1, 3, C3, [256, False]], # 17 (P3/8-small)
38
-
39
- [-1, 1, Conv, [256, 3, 2]],
40
- [[-1, 14], 1, Concat, [1]], # cat head P4
41
- [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
42
-
43
- [-1, 1, Conv, [512, 3, 2]],
44
- [[-1, 10], 1, Concat, [1]], # cat head P5
45
- [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
46
-
47
- [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ultralytics/yolov5/models/hub/yolov5l6.yaml DELETED
@@ -1,60 +0,0 @@
1
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
-
3
- # Parameters
4
- nc: 80 # number of classes
5
- depth_multiple: 1.0 # model depth multiple
6
- width_multiple: 1.0 # layer channel multiple
7
- anchors:
8
- - [19,27, 44,40, 38,94] # P3/8
9
- - [96,68, 86,152, 180,137] # P4/16
10
- - [140,301, 303,264, 238,542] # P5/32
11
- - [436,615, 739,380, 925,792] # P6/64
12
-
13
- # YOLOv5 v6.0 backbone
14
- backbone:
15
- # [from, number, module, args]
16
- [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
17
- [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
18
- [-1, 3, C3, [128]],
19
- [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
20
- [-1, 6, C3, [256]],
21
- [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
22
- [-1, 9, C3, [512]],
23
- [-1, 1, Conv, [768, 3, 2]], # 7-P5/32
24
- [-1, 3, C3, [768]],
25
- [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
26
- [-1, 3, C3, [1024]],
27
- [-1, 1, SPPF, [1024, 5]], # 11
28
- ]
29
-
30
- # YOLOv5 v6.0 head
31
- head:
32
- [[-1, 1, Conv, [768, 1, 1]],
33
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
34
- [[-1, 8], 1, Concat, [1]], # cat backbone P5
35
- [-1, 3, C3, [768, False]], # 15
36
-
37
- [-1, 1, Conv, [512, 1, 1]],
38
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
39
- [[-1, 6], 1, Concat, [1]], # cat backbone P4
40
- [-1, 3, C3, [512, False]], # 19
41
-
42
- [-1, 1, Conv, [256, 1, 1]],
43
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
44
- [[-1, 4], 1, Concat, [1]], # cat backbone P3
45
- [-1, 3, C3, [256, False]], # 23 (P3/8-small)
46
-
47
- [-1, 1, Conv, [256, 3, 2]],
48
- [[-1, 20], 1, Concat, [1]], # cat head P4
49
- [-1, 3, C3, [512, False]], # 26 (P4/16-medium)
50
-
51
- [-1, 1, Conv, [512, 3, 2]],
52
- [[-1, 16], 1, Concat, [1]], # cat head P5
53
- [-1, 3, C3, [768, False]], # 29 (P5/32-large)
54
-
55
- [-1, 1, Conv, [768, 3, 2]],
56
- [[-1, 12], 1, Concat, [1]], # cat head P6
57
- [-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
58
-
59
- [[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
60
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ultralytics/yolov5/models/hub/yolov5m6.yaml DELETED
@@ -1,60 +0,0 @@
1
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
-
3
- # Parameters
4
- nc: 80 # number of classes
5
- depth_multiple: 0.67 # model depth multiple
6
- width_multiple: 0.75 # layer channel multiple
7
- anchors:
8
- - [19,27, 44,40, 38,94] # P3/8
9
- - [96,68, 86,152, 180,137] # P4/16
10
- - [140,301, 303,264, 238,542] # P5/32
11
- - [436,615, 739,380, 925,792] # P6/64
12
-
13
- # YOLOv5 v6.0 backbone
14
- backbone:
15
- # [from, number, module, args]
16
- [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
17
- [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
18
- [-1, 3, C3, [128]],
19
- [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
20
- [-1, 6, C3, [256]],
21
- [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
22
- [-1, 9, C3, [512]],
23
- [-1, 1, Conv, [768, 3, 2]], # 7-P5/32
24
- [-1, 3, C3, [768]],
25
- [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
26
- [-1, 3, C3, [1024]],
27
- [-1, 1, SPPF, [1024, 5]], # 11
28
- ]
29
-
30
- # YOLOv5 v6.0 head
31
- head:
32
- [[-1, 1, Conv, [768, 1, 1]],
33
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
34
- [[-1, 8], 1, Concat, [1]], # cat backbone P5
35
- [-1, 3, C3, [768, False]], # 15
36
-
37
- [-1, 1, Conv, [512, 1, 1]],
38
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
39
- [[-1, 6], 1, Concat, [1]], # cat backbone P4
40
- [-1, 3, C3, [512, False]], # 19
41
-
42
- [-1, 1, Conv, [256, 1, 1]],
43
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
44
- [[-1, 4], 1, Concat, [1]], # cat backbone P3
45
- [-1, 3, C3, [256, False]], # 23 (P3/8-small)
46
-
47
- [-1, 1, Conv, [256, 3, 2]],
48
- [[-1, 20], 1, Concat, [1]], # cat head P4
49
- [-1, 3, C3, [512, False]], # 26 (P4/16-medium)
50
-
51
- [-1, 1, Conv, [512, 3, 2]],
52
- [[-1, 16], 1, Concat, [1]], # cat head P5
53
- [-1, 3, C3, [768, False]], # 29 (P5/32-large)
54
-
55
- [-1, 1, Conv, [768, 3, 2]],
56
- [[-1, 12], 1, Concat, [1]], # cat head P6
57
- [-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
58
-
59
- [[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
60
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ultralytics/yolov5/models/hub/yolov5n6.yaml DELETED
@@ -1,60 +0,0 @@
1
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
-
3
- # Parameters
4
- nc: 80 # number of classes
5
- depth_multiple: 0.33 # model depth multiple
6
- width_multiple: 0.25 # layer channel multiple
7
- anchors:
8
- - [19,27, 44,40, 38,94] # P3/8
9
- - [96,68, 86,152, 180,137] # P4/16
10
- - [140,301, 303,264, 238,542] # P5/32
11
- - [436,615, 739,380, 925,792] # P6/64
12
-
13
- # YOLOv5 v6.0 backbone
14
- backbone:
15
- # [from, number, module, args]
16
- [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
17
- [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
18
- [-1, 3, C3, [128]],
19
- [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
20
- [-1, 6, C3, [256]],
21
- [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
22
- [-1, 9, C3, [512]],
23
- [-1, 1, Conv, [768, 3, 2]], # 7-P5/32
24
- [-1, 3, C3, [768]],
25
- [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
26
- [-1, 3, C3, [1024]],
27
- [-1, 1, SPPF, [1024, 5]], # 11
28
- ]
29
-
30
- # YOLOv5 v6.0 head
31
- head:
32
- [[-1, 1, Conv, [768, 1, 1]],
33
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
34
- [[-1, 8], 1, Concat, [1]], # cat backbone P5
35
- [-1, 3, C3, [768, False]], # 15
36
-
37
- [-1, 1, Conv, [512, 1, 1]],
38
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
39
- [[-1, 6], 1, Concat, [1]], # cat backbone P4
40
- [-1, 3, C3, [512, False]], # 19
41
-
42
- [-1, 1, Conv, [256, 1, 1]],
43
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
44
- [[-1, 4], 1, Concat, [1]], # cat backbone P3
45
- [-1, 3, C3, [256, False]], # 23 (P3/8-small)
46
-
47
- [-1, 1, Conv, [256, 3, 2]],
48
- [[-1, 20], 1, Concat, [1]], # cat head P4
49
- [-1, 3, C3, [512, False]], # 26 (P4/16-medium)
50
-
51
- [-1, 1, Conv, [512, 3, 2]],
52
- [[-1, 16], 1, Concat, [1]], # cat head P5
53
- [-1, 3, C3, [768, False]], # 29 (P5/32-large)
54
-
55
- [-1, 1, Conv, [768, 3, 2]],
56
- [[-1, 12], 1, Concat, [1]], # cat head P6
57
- [-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
58
-
59
- [[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
60
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ultralytics/yolov5/models/hub/yolov5s-ghost.yaml DELETED
@@ -1,48 +0,0 @@
1
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
-
3
- # Parameters
4
- nc: 80 # number of classes
5
- depth_multiple: 0.33 # model depth multiple
6
- width_multiple: 0.50 # layer channel multiple
7
- anchors:
8
- - [10,13, 16,30, 33,23] # P3/8
9
- - [30,61, 62,45, 59,119] # P4/16
10
- - [116,90, 156,198, 373,326] # P5/32
11
-
12
- # YOLOv5 v6.0 backbone
13
- backbone:
14
- # [from, number, module, args]
15
- [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
16
- [-1, 1, GhostConv, [128, 3, 2]], # 1-P2/4
17
- [-1, 3, C3Ghost, [128]],
18
- [-1, 1, GhostConv, [256, 3, 2]], # 3-P3/8
19
- [-1, 6, C3Ghost, [256]],
20
- [-1, 1, GhostConv, [512, 3, 2]], # 5-P4/16
21
- [-1, 9, C3Ghost, [512]],
22
- [-1, 1, GhostConv, [1024, 3, 2]], # 7-P5/32
23
- [-1, 3, C3Ghost, [1024]],
24
- [-1, 1, SPPF, [1024, 5]], # 9
25
- ]
26
-
27
- # YOLOv5 v6.0 head
28
- head:
29
- [[-1, 1, GhostConv, [512, 1, 1]],
30
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31
- [[-1, 6], 1, Concat, [1]], # cat backbone P4
32
- [-1, 3, C3Ghost, [512, False]], # 13
33
-
34
- [-1, 1, GhostConv, [256, 1, 1]],
35
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36
- [[-1, 4], 1, Concat, [1]], # cat backbone P3
37
- [-1, 3, C3Ghost, [256, False]], # 17 (P3/8-small)
38
-
39
- [-1, 1, GhostConv, [256, 3, 2]],
40
- [[-1, 14], 1, Concat, [1]], # cat head P4
41
- [-1, 3, C3Ghost, [512, False]], # 20 (P4/16-medium)
42
-
43
- [-1, 1, GhostConv, [512, 3, 2]],
44
- [[-1, 10], 1, Concat, [1]], # cat head P5
45
- [-1, 3, C3Ghost, [1024, False]], # 23 (P5/32-large)
46
-
47
- [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ultralytics/yolov5/models/hub/yolov5s-transformer.yaml DELETED
@@ -1,48 +0,0 @@
1
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
-
3
- # Parameters
4
- nc: 80 # number of classes
5
- depth_multiple: 0.33 # model depth multiple
6
- width_multiple: 0.50 # layer channel multiple
7
- anchors:
8
- - [10,13, 16,30, 33,23] # P3/8
9
- - [30,61, 62,45, 59,119] # P4/16
10
- - [116,90, 156,198, 373,326] # P5/32
11
-
12
- # YOLOv5 v6.0 backbone
13
- backbone:
14
- # [from, number, module, args]
15
- [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
16
- [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17
- [-1, 3, C3, [128]],
18
- [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19
- [-1, 6, C3, [256]],
20
- [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21
- [-1, 9, C3, [512]],
22
- [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23
- [-1, 3, C3TR, [1024]], # 9 <--- C3TR() Transformer module
24
- [-1, 1, SPPF, [1024, 5]], # 9
25
- ]
26
-
27
- # YOLOv5 v6.0 head
28
- head:
29
- [[-1, 1, Conv, [512, 1, 1]],
30
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31
- [[-1, 6], 1, Concat, [1]], # cat backbone P4
32
- [-1, 3, C3, [512, False]], # 13
33
-
34
- [-1, 1, Conv, [256, 1, 1]],
35
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36
- [[-1, 4], 1, Concat, [1]], # cat backbone P3
37
- [-1, 3, C3, [256, False]], # 17 (P3/8-small)
38
-
39
- [-1, 1, Conv, [256, 3, 2]],
40
- [[-1, 14], 1, Concat, [1]], # cat head P4
41
- [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
42
-
43
- [-1, 1, Conv, [512, 3, 2]],
44
- [[-1, 10], 1, Concat, [1]], # cat head P5
45
- [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
46
-
47
- [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ultralytics/yolov5/models/hub/yolov5s6.yaml DELETED
@@ -1,60 +0,0 @@
1
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
-
3
- # Parameters
4
- nc: 80 # number of classes
5
- depth_multiple: 0.33 # model depth multiple
6
- width_multiple: 0.50 # layer channel multiple
7
- anchors:
8
- - [19,27, 44,40, 38,94] # P3/8
9
- - [96,68, 86,152, 180,137] # P4/16
10
- - [140,301, 303,264, 238,542] # P5/32
11
- - [436,615, 739,380, 925,792] # P6/64
12
-
13
- # YOLOv5 v6.0 backbone
14
- backbone:
15
- # [from, number, module, args]
16
- [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
17
- [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
18
- [-1, 3, C3, [128]],
19
- [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
20
- [-1, 6, C3, [256]],
21
- [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
22
- [-1, 9, C3, [512]],
23
- [-1, 1, Conv, [768, 3, 2]], # 7-P5/32
24
- [-1, 3, C3, [768]],
25
- [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
26
- [-1, 3, C3, [1024]],
27
- [-1, 1, SPPF, [1024, 5]], # 11
28
- ]
29
-
30
- # YOLOv5 v6.0 head
31
- head:
32
- [[-1, 1, Conv, [768, 1, 1]],
33
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
34
- [[-1, 8], 1, Concat, [1]], # cat backbone P5
35
- [-1, 3, C3, [768, False]], # 15
36
-
37
- [-1, 1, Conv, [512, 1, 1]],
38
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
39
- [[-1, 6], 1, Concat, [1]], # cat backbone P4
40
- [-1, 3, C3, [512, False]], # 19
41
-
42
- [-1, 1, Conv, [256, 1, 1]],
43
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
44
- [[-1, 4], 1, Concat, [1]], # cat backbone P3
45
- [-1, 3, C3, [256, False]], # 23 (P3/8-small)
46
-
47
- [-1, 1, Conv, [256, 3, 2]],
48
- [[-1, 20], 1, Concat, [1]], # cat head P4
49
- [-1, 3, C3, [512, False]], # 26 (P4/16-medium)
50
-
51
- [-1, 1, Conv, [512, 3, 2]],
52
- [[-1, 16], 1, Concat, [1]], # cat head P5
53
- [-1, 3, C3, [768, False]], # 29 (P5/32-large)
54
-
55
- [-1, 1, Conv, [768, 3, 2]],
56
- [[-1, 12], 1, Concat, [1]], # cat head P6
57
- [-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
58
-
59
- [[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
60
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ultralytics/yolov5/models/hub/yolov5x6.yaml DELETED
@@ -1,60 +0,0 @@
1
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
-
3
- # Parameters
4
- nc: 80 # number of classes
5
- depth_multiple: 1.33 # model depth multiple
6
- width_multiple: 1.25 # layer channel multiple
7
- anchors:
8
- - [19,27, 44,40, 38,94] # P3/8
9
- - [96,68, 86,152, 180,137] # P4/16
10
- - [140,301, 303,264, 238,542] # P5/32
11
- - [436,615, 739,380, 925,792] # P6/64
12
-
13
- # YOLOv5 v6.0 backbone
14
- backbone:
15
- # [from, number, module, args]
16
- [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
17
- [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
18
- [-1, 3, C3, [128]],
19
- [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
20
- [-1, 6, C3, [256]],
21
- [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
22
- [-1, 9, C3, [512]],
23
- [-1, 1, Conv, [768, 3, 2]], # 7-P5/32
24
- [-1, 3, C3, [768]],
25
- [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
26
- [-1, 3, C3, [1024]],
27
- [-1, 1, SPPF, [1024, 5]], # 11
28
- ]
29
-
30
- # YOLOv5 v6.0 head
31
- head:
32
- [[-1, 1, Conv, [768, 1, 1]],
33
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
34
- [[-1, 8], 1, Concat, [1]], # cat backbone P5
35
- [-1, 3, C3, [768, False]], # 15
36
-
37
- [-1, 1, Conv, [512, 1, 1]],
38
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
39
- [[-1, 6], 1, Concat, [1]], # cat backbone P4
40
- [-1, 3, C3, [512, False]], # 19
41
-
42
- [-1, 1, Conv, [256, 1, 1]],
43
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
44
- [[-1, 4], 1, Concat, [1]], # cat backbone P3
45
- [-1, 3, C3, [256, False]], # 23 (P3/8-small)
46
-
47
- [-1, 1, Conv, [256, 3, 2]],
48
- [[-1, 20], 1, Concat, [1]], # cat head P4
49
- [-1, 3, C3, [512, False]], # 26 (P4/16-medium)
50
-
51
- [-1, 1, Conv, [512, 3, 2]],
52
- [[-1, 16], 1, Concat, [1]], # cat head P5
53
- [-1, 3, C3, [768, False]], # 29 (P5/32-large)
54
-
55
- [-1, 1, Conv, [768, 3, 2]],
56
- [[-1, 12], 1, Concat, [1]], # cat head P6
57
- [-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
58
-
59
- [[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
60
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ultralytics/yolov5/models/tf.py DELETED
@@ -1,466 +0,0 @@
1
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
- """
3
- TensorFlow, Keras and TFLite versions of YOLOv5
4
- Authored by https://github.com/zldrobit in PR https://github.com/ultralytics/yolov5/pull/1127
5
-
6
- Usage:
7
- $ python models/tf.py --weights yolov5s.pt
8
-
9
- Export:
10
- $ python path/to/export.py --weights yolov5s.pt --include saved_model pb tflite tfjs
11
- """
12
-
13
- import argparse
14
- import sys
15
- from copy import deepcopy
16
- from pathlib import Path
17
-
18
- FILE = Path(__file__).resolve()
19
- ROOT = FILE.parents[1] # YOLOv5 root directory
20
- if str(ROOT) not in sys.path:
21
- sys.path.append(str(ROOT)) # add ROOT to PATH
22
- # ROOT = ROOT.relative_to(Path.cwd()) # relative
23
-
24
- import numpy as np
25
- import tensorflow as tf
26
- import torch
27
- import torch.nn as nn
28
- from tensorflow import keras
29
-
30
- from models.common import C3, SPP, SPPF, Bottleneck, BottleneckCSP, Concat, Conv, DWConv, Focus, autopad
31
- from models.experimental import CrossConv, MixConv2d, attempt_load
32
- from models.yolo import Detect
33
- from utils.activations import SiLU
34
- from utils.general import LOGGER, make_divisible, print_args
35
-
36
-
37
- class TFBN(keras.layers.Layer):
38
- # TensorFlow BatchNormalization wrapper
39
- def __init__(self, w=None):
40
- super().__init__()
41
- self.bn = keras.layers.BatchNormalization(
42
- beta_initializer=keras.initializers.Constant(w.bias.numpy()),
43
- gamma_initializer=keras.initializers.Constant(w.weight.numpy()),
44
- moving_mean_initializer=keras.initializers.Constant(w.running_mean.numpy()),
45
- moving_variance_initializer=keras.initializers.Constant(w.running_var.numpy()),
46
- epsilon=w.eps)
47
-
48
- def call(self, inputs):
49
- return self.bn(inputs)
50
-
51
-
52
- class TFPad(keras.layers.Layer):
53
- def __init__(self, pad):
54
- super().__init__()
55
- self.pad = tf.constant([[0, 0], [pad, pad], [pad, pad], [0, 0]])
56
-
57
- def call(self, inputs):
58
- return tf.pad(inputs, self.pad, mode='constant', constant_values=0)
59
-
60
-
61
- class TFConv(keras.layers.Layer):
62
- # Standard convolution
63
- def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
64
- # ch_in, ch_out, weights, kernel, stride, padding, groups
65
- super().__init__()
66
- assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
67
- assert isinstance(k, int), "Convolution with multiple kernels are not allowed."
68
- # TensorFlow convolution padding is inconsistent with PyTorch (e.g. k=3 s=2 'SAME' padding)
69
- # see https://stackoverflow.com/questions/52975843/comparing-conv2d-with-padding-between-tensorflow-and-pytorch
70
-
71
- conv = keras.layers.Conv2D(
72
- c2, k, s, 'SAME' if s == 1 else 'VALID', use_bias=False if hasattr(w, 'bn') else True,
73
- kernel_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()),
74
- bias_initializer='zeros' if hasattr(w, 'bn') else keras.initializers.Constant(w.conv.bias.numpy()))
75
- self.conv = conv if s == 1 else keras.Sequential([TFPad(autopad(k, p)), conv])
76
- self.bn = TFBN(w.bn) if hasattr(w, 'bn') else tf.identity
77
-
78
- # YOLOv5 activations
79
- if isinstance(w.act, nn.LeakyReLU):
80
- self.act = (lambda x: keras.activations.relu(x, alpha=0.1)) if act else tf.identity
81
- elif isinstance(w.act, nn.Hardswish):
82
- self.act = (lambda x: x * tf.nn.relu6(x + 3) * 0.166666667) if act else tf.identity
83
- elif isinstance(w.act, (nn.SiLU, SiLU)):
84
- self.act = (lambda x: keras.activations.swish(x)) if act else tf.identity
85
- else:
86
- raise Exception(f'no matching TensorFlow activation found for {w.act}')
87
-
88
- def call(self, inputs):
89
- return self.act(self.bn(self.conv(inputs)))
90
-
91
-
92
- class TFFocus(keras.layers.Layer):
93
- # Focus wh information into c-space
94
- def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
95
- # ch_in, ch_out, kernel, stride, padding, groups
96
- super().__init__()
97
- self.conv = TFConv(c1 * 4, c2, k, s, p, g, act, w.conv)
98
-
99
- def call(self, inputs): # x(b,w,h,c) -> y(b,w/2,h/2,4c)
100
- # inputs = inputs / 255 # normalize 0-255 to 0-1
101
- return self.conv(tf.concat([inputs[:, ::2, ::2, :],
102
- inputs[:, 1::2, ::2, :],
103
- inputs[:, ::2, 1::2, :],
104
- inputs[:, 1::2, 1::2, :]], 3))
105
-
106
-
107
- class TFBottleneck(keras.layers.Layer):
108
- # Standard bottleneck
109
- def __init__(self, c1, c2, shortcut=True, g=1, e=0.5, w=None): # ch_in, ch_out, shortcut, groups, expansion
110
- super().__init__()
111
- c_ = int(c2 * e) # hidden channels
112
- self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
113
- self.cv2 = TFConv(c_, c2, 3, 1, g=g, w=w.cv2)
114
- self.add = shortcut and c1 == c2
115
-
116
- def call(self, inputs):
117
- return inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs))
118
-
119
-
120
- class TFConv2d(keras.layers.Layer):
121
- # Substitution for PyTorch nn.Conv2D
122
- def __init__(self, c1, c2, k, s=1, g=1, bias=True, w=None):
123
- super().__init__()
124
- assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
125
- self.conv = keras.layers.Conv2D(
126
- c2, k, s, 'VALID', use_bias=bias,
127
- kernel_initializer=keras.initializers.Constant(w.weight.permute(2, 3, 1, 0).numpy()),
128
- bias_initializer=keras.initializers.Constant(w.bias.numpy()) if bias else None, )
129
-
130
- def call(self, inputs):
131
- return self.conv(inputs)
132
-
133
-
134
- class TFBottleneckCSP(keras.layers.Layer):
135
- # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
136
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
137
- # ch_in, ch_out, number, shortcut, groups, expansion
138
- super().__init__()
139
- c_ = int(c2 * e) # hidden channels
140
- self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
141
- self.cv2 = TFConv2d(c1, c_, 1, 1, bias=False, w=w.cv2)
142
- self.cv3 = TFConv2d(c_, c_, 1, 1, bias=False, w=w.cv3)
143
- self.cv4 = TFConv(2 * c_, c2, 1, 1, w=w.cv4)
144
- self.bn = TFBN(w.bn)
145
- self.act = lambda x: keras.activations.relu(x, alpha=0.1)
146
- self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)])
147
-
148
- def call(self, inputs):
149
- y1 = self.cv3(self.m(self.cv1(inputs)))
150
- y2 = self.cv2(inputs)
151
- return self.cv4(self.act(self.bn(tf.concat((y1, y2), axis=3))))
152
-
153
-
154
- class TFC3(keras.layers.Layer):
155
- # CSP Bottleneck with 3 convolutions
156
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
157
- # ch_in, ch_out, number, shortcut, groups, expansion
158
- super().__init__()
159
- c_ = int(c2 * e) # hidden channels
160
- self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
161
- self.cv2 = TFConv(c1, c_, 1, 1, w=w.cv2)
162
- self.cv3 = TFConv(2 * c_, c2, 1, 1, w=w.cv3)
163
- self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)])
164
-
165
- def call(self, inputs):
166
- return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3))
167
-
168
-
169
- class TFSPP(keras.layers.Layer):
170
- # Spatial pyramid pooling layer used in YOLOv3-SPP
171
- def __init__(self, c1, c2, k=(5, 9, 13), w=None):
172
- super().__init__()
173
- c_ = c1 // 2 # hidden channels
174
- self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
175
- self.cv2 = TFConv(c_ * (len(k) + 1), c2, 1, 1, w=w.cv2)
176
- self.m = [keras.layers.MaxPool2D(pool_size=x, strides=1, padding='SAME') for x in k]
177
-
178
- def call(self, inputs):
179
- x = self.cv1(inputs)
180
- return self.cv2(tf.concat([x] + [m(x) for m in self.m], 3))
181
-
182
-
183
- class TFSPPF(keras.layers.Layer):
184
- # Spatial pyramid pooling-Fast layer
185
- def __init__(self, c1, c2, k=5, w=None):
186
- super().__init__()
187
- c_ = c1 // 2 # hidden channels
188
- self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
189
- self.cv2 = TFConv(c_ * 4, c2, 1, 1, w=w.cv2)
190
- self.m = keras.layers.MaxPool2D(pool_size=k, strides=1, padding='SAME')
191
-
192
- def call(self, inputs):
193
- x = self.cv1(inputs)
194
- y1 = self.m(x)
195
- y2 = self.m(y1)
196
- return self.cv2(tf.concat([x, y1, y2, self.m(y2)], 3))
197
-
198
-
199
- class TFDetect(keras.layers.Layer):
200
- def __init__(self, nc=80, anchors=(), ch=(), imgsz=(640, 640), w=None): # detection layer
201
- super().__init__()
202
- self.stride = tf.convert_to_tensor(w.stride.numpy(), dtype=tf.float32)
203
- self.nc = nc # number of classes
204
- self.no = nc + 5 # number of outputs per anchor
205
- self.nl = len(anchors) # number of detection layers
206
- self.na = len(anchors[0]) // 2 # number of anchors
207
- self.grid = [tf.zeros(1)] * self.nl # init grid
208
- self.anchors = tf.convert_to_tensor(w.anchors.numpy(), dtype=tf.float32)
209
- self.anchor_grid = tf.reshape(self.anchors * tf.reshape(self.stride, [self.nl, 1, 1]),
210
- [self.nl, 1, -1, 1, 2])
211
- self.m = [TFConv2d(x, self.no * self.na, 1, w=w.m[i]) for i, x in enumerate(ch)]
212
- self.training = False # set to False after building model
213
- self.imgsz = imgsz
214
- for i in range(self.nl):
215
- ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i]
216
- self.grid[i] = self._make_grid(nx, ny)
217
-
218
- def call(self, inputs):
219
- z = [] # inference output
220
- x = []
221
- for i in range(self.nl):
222
- x.append(self.m[i](inputs[i]))
223
- # x(bs,20,20,255) to x(bs,3,20,20,85)
224
- ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i]
225
- x[i] = tf.reshape(x[i], [-1, ny * nx, self.na, self.no])
226
-
227
- if not self.training: # inference
228
- y = tf.sigmoid(x[i])
229
- grid = tf.transpose(self.grid[i], [0, 2, 1, 3]) - 0.5
230
- anchor_grid = tf.transpose(self.anchor_grid[i], [0, 2, 1, 3]) * 4
231
- xy = (y[..., 0:2] * 2 + grid) * self.stride[i] # xy
232
- wh = y[..., 2:4] ** 2 * anchor_grid
233
- # Normalize xywh to 0-1 to reduce calibration error
234
- xy /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32)
235
- wh /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32)
236
- y = tf.concat([xy, wh, y[..., 4:]], -1)
237
- z.append(tf.reshape(y, [-1, self.na * ny * nx, self.no]))
238
-
239
- return tf.transpose(x, [0, 2, 1, 3]) if self.training else (tf.concat(z, 1), x)
240
-
241
- @staticmethod
242
- def _make_grid(nx=20, ny=20):
243
- # yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
244
- # return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
245
- xv, yv = tf.meshgrid(tf.range(nx), tf.range(ny))
246
- return tf.cast(tf.reshape(tf.stack([xv, yv], 2), [1, 1, ny * nx, 2]), dtype=tf.float32)
247
-
248
-
249
- class TFUpsample(keras.layers.Layer):
250
- def __init__(self, size, scale_factor, mode, w=None): # warning: all arguments needed including 'w'
251
- super().__init__()
252
- assert scale_factor == 2, "scale_factor must be 2"
253
- self.upsample = lambda x: tf.image.resize(x, (x.shape[1] * 2, x.shape[2] * 2), method=mode)
254
- # self.upsample = keras.layers.UpSampling2D(size=scale_factor, interpolation=mode)
255
- # with default arguments: align_corners=False, half_pixel_centers=False
256
- # self.upsample = lambda x: tf.raw_ops.ResizeNearestNeighbor(images=x,
257
- # size=(x.shape[1] * 2, x.shape[2] * 2))
258
-
259
- def call(self, inputs):
260
- return self.upsample(inputs)
261
-
262
-
263
- class TFConcat(keras.layers.Layer):
264
- def __init__(self, dimension=1, w=None):
265
- super().__init__()
266
- assert dimension == 1, "convert only NCHW to NHWC concat"
267
- self.d = 3
268
-
269
- def call(self, inputs):
270
- return tf.concat(inputs, self.d)
271
-
272
-
273
- def parse_model(d, ch, model, imgsz): # model_dict, input_channels(3)
274
- LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}")
275
- anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
276
- na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
277
- no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
278
-
279
- layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
280
- for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
281
- m_str = m
282
- m = eval(m) if isinstance(m, str) else m # eval strings
283
- for j, a in enumerate(args):
284
- try:
285
- args[j] = eval(a) if isinstance(a, str) else a # eval strings
286
- except NameError:
287
- pass
288
-
289
- n = max(round(n * gd), 1) if n > 1 else n # depth gain
290
- if m in [nn.Conv2d, Conv, Bottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3]:
291
- c1, c2 = ch[f], args[0]
292
- c2 = make_divisible(c2 * gw, 8) if c2 != no else c2
293
-
294
- args = [c1, c2, *args[1:]]
295
- if m in [BottleneckCSP, C3]:
296
- args.insert(2, n)
297
- n = 1
298
- elif m is nn.BatchNorm2d:
299
- args = [ch[f]]
300
- elif m is Concat:
301
- c2 = sum(ch[-1 if x == -1 else x + 1] for x in f)
302
- elif m is Detect:
303
- args.append([ch[x + 1] for x in f])
304
- if isinstance(args[1], int): # number of anchors
305
- args[1] = [list(range(args[1] * 2))] * len(f)
306
- args.append(imgsz)
307
- else:
308
- c2 = ch[f]
309
-
310
- tf_m = eval('TF' + m_str.replace('nn.', ''))
311
- m_ = keras.Sequential([tf_m(*args, w=model.model[i][j]) for j in range(n)]) if n > 1 \
312
- else tf_m(*args, w=model.model[i]) # module
313
-
314
- torch_m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
315
- t = str(m)[8:-2].replace('__main__.', '') # module type
316
- np = sum(x.numel() for x in torch_m_.parameters()) # number params
317
- m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
318
- LOGGER.info(f'{i:>3}{str(f):>18}{str(n):>3}{np:>10} {t:<40}{str(args):<30}') # print
319
- save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
320
- layers.append(m_)
321
- ch.append(c2)
322
- return keras.Sequential(layers), sorted(save)
323
-
324
-
325
- class TFModel:
326
- def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, model=None, imgsz=(640, 640)): # model, channels, classes
327
- super().__init__()
328
- if isinstance(cfg, dict):
329
- self.yaml = cfg # model dict
330
- else: # is *.yaml
331
- import yaml # for torch hub
332
- self.yaml_file = Path(cfg).name
333
- with open(cfg) as f:
334
- self.yaml = yaml.load(f, Loader=yaml.FullLoader) # model dict
335
-
336
- # Define model
337
- if nc and nc != self.yaml['nc']:
338
- LOGGER.info(f"Overriding {cfg} nc={self.yaml['nc']} with nc={nc}")
339
- self.yaml['nc'] = nc # override yaml value
340
- self.model, self.savelist = parse_model(deepcopy(self.yaml), ch=[ch], model=model, imgsz=imgsz)
341
-
342
- def predict(self, inputs, tf_nms=False, agnostic_nms=False, topk_per_class=100, topk_all=100, iou_thres=0.45,
343
- conf_thres=0.25):
344
- y = [] # outputs
345
- x = inputs
346
- for i, m in enumerate(self.model.layers):
347
- if m.f != -1: # if not from previous layer
348
- x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
349
-
350
- x = m(x) # run
351
- y.append(x if m.i in self.savelist else None) # save output
352
-
353
- # Add TensorFlow NMS
354
- if tf_nms:
355
- boxes = self._xywh2xyxy(x[0][..., :4])
356
- probs = x[0][:, :, 4:5]
357
- classes = x[0][:, :, 5:]
358
- scores = probs * classes
359
- if agnostic_nms:
360
- nms = AgnosticNMS()((boxes, classes, scores), topk_all, iou_thres, conf_thres)
361
- return nms, x[1]
362
- else:
363
- boxes = tf.expand_dims(boxes, 2)
364
- nms = tf.image.combined_non_max_suppression(
365
- boxes, scores, topk_per_class, topk_all, iou_thres, conf_thres, clip_boxes=False)
366
- return nms, x[1]
367
-
368
- return x[0] # output only first tensor [1,6300,85] = [xywh, conf, class0, class1, ...]
369
- # x = x[0][0] # [x(1,6300,85), ...] to x(6300,85)
370
- # xywh = x[..., :4] # x(6300,4) boxes
371
- # conf = x[..., 4:5] # x(6300,1) confidences
372
- # cls = tf.reshape(tf.cast(tf.argmax(x[..., 5:], axis=1), tf.float32), (-1, 1)) # x(6300,1) classes
373
- # return tf.concat([conf, cls, xywh], 1)
374
-
375
- @staticmethod
376
- def _xywh2xyxy(xywh):
377
- # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
378
- x, y, w, h = tf.split(xywh, num_or_size_splits=4, axis=-1)
379
- return tf.concat([x - w / 2, y - h / 2, x + w / 2, y + h / 2], axis=-1)
380
-
381
-
382
- class AgnosticNMS(keras.layers.Layer):
383
- # TF Agnostic NMS
384
- def call(self, input, topk_all, iou_thres, conf_thres):
385
- # wrap map_fn to avoid TypeSpec related error https://stackoverflow.com/a/65809989/3036450
386
- return tf.map_fn(lambda x: self._nms(x, topk_all, iou_thres, conf_thres), input,
387
- fn_output_signature=(tf.float32, tf.float32, tf.float32, tf.int32),
388
- name='agnostic_nms')
389
-
390
- @staticmethod
391
- def _nms(x, topk_all=100, iou_thres=0.45, conf_thres=0.25): # agnostic NMS
392
- boxes, classes, scores = x
393
- class_inds = tf.cast(tf.argmax(classes, axis=-1), tf.float32)
394
- scores_inp = tf.reduce_max(scores, -1)
395
- selected_inds = tf.image.non_max_suppression(
396
- boxes, scores_inp, max_output_size=topk_all, iou_threshold=iou_thres, score_threshold=conf_thres)
397
- selected_boxes = tf.gather(boxes, selected_inds)
398
- padded_boxes = tf.pad(selected_boxes,
399
- paddings=[[0, topk_all - tf.shape(selected_boxes)[0]], [0, 0]],
400
- mode="CONSTANT", constant_values=0.0)
401
- selected_scores = tf.gather(scores_inp, selected_inds)
402
- padded_scores = tf.pad(selected_scores,
403
- paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]],
404
- mode="CONSTANT", constant_values=-1.0)
405
- selected_classes = tf.gather(class_inds, selected_inds)
406
- padded_classes = tf.pad(selected_classes,
407
- paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]],
408
- mode="CONSTANT", constant_values=-1.0)
409
- valid_detections = tf.shape(selected_inds)[0]
410
- return padded_boxes, padded_scores, padded_classes, valid_detections
411
-
412
-
413
- def representative_dataset_gen(dataset, ncalib=100):
414
- # Representative dataset generator for use with converter.representative_dataset, returns a generator of np arrays
415
- for n, (path, img, im0s, vid_cap, string) in enumerate(dataset):
416
- input = np.transpose(img, [1, 2, 0])
417
- input = np.expand_dims(input, axis=0).astype(np.float32)
418
- input /= 255
419
- yield [input]
420
- if n >= ncalib:
421
- break
422
-
423
-
424
- def run(weights=ROOT / 'yolov5s.pt', # weights path
425
- imgsz=(640, 640), # inference size h,w
426
- batch_size=1, # batch size
427
- dynamic=False, # dynamic batch size
428
- ):
429
- # PyTorch model
430
- im = torch.zeros((batch_size, 3, *imgsz)) # BCHW image
431
- model = attempt_load(weights, map_location=torch.device('cpu'), inplace=True, fuse=False)
432
- _ = model(im) # inference
433
- model.info()
434
-
435
- # TensorFlow model
436
- im = tf.zeros((batch_size, *imgsz, 3)) # BHWC image
437
- tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
438
- _ = tf_model.predict(im) # inference
439
-
440
- # Keras model
441
- im = keras.Input(shape=(*imgsz, 3), batch_size=None if dynamic else batch_size)
442
- keras_model = keras.Model(inputs=im, outputs=tf_model.predict(im))
443
- keras_model.summary()
444
-
445
- LOGGER.info('PyTorch, TensorFlow and Keras models successfully verified.\nUse export.py for TF model export.')
446
-
447
-
448
- def parse_opt():
449
- parser = argparse.ArgumentParser()
450
- parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='weights path')
451
- parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
452
- parser.add_argument('--batch-size', type=int, default=1, help='batch size')
453
- parser.add_argument('--dynamic', action='store_true', help='dynamic batch size')
454
- opt = parser.parse_args()
455
- opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
456
- print_args(FILE.stem, opt)
457
- return opt
458
-
459
-
460
- def main(opt):
461
- run(**vars(opt))
462
-
463
-
464
- if __name__ == "__main__":
465
- opt = parse_opt()
466
- main(opt)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ultralytics/yolov5/models/yolo.py DELETED
@@ -1,329 +0,0 @@
1
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
- """
3
- YOLO-specific modules
4
-
5
- Usage:
6
- $ python path/to/models/yolo.py --cfg yolov5s.yaml
7
- """
8
-
9
- import argparse
10
- import sys
11
- from copy import deepcopy
12
- from pathlib import Path
13
-
14
- FILE = Path(__file__).resolve()
15
- ROOT = FILE.parents[1] # YOLOv5 root directory
16
- if str(ROOT) not in sys.path:
17
- sys.path.append(str(ROOT)) # add ROOT to PATH
18
- # ROOT = ROOT.relative_to(Path.cwd()) # relative
19
-
20
- from models.common import *
21
- from models.experimental import *
22
- from utils.autoanchor import check_anchor_order
23
- from utils.general import LOGGER, check_version, check_yaml, make_divisible, print_args
24
- from utils.plots import feature_visualization
25
- from utils.torch_utils import fuse_conv_and_bn, initialize_weights, model_info, scale_img, select_device, time_sync
26
-
27
- try:
28
- import thop # for FLOPs computation
29
- except ImportError:
30
- thop = None
31
-
32
-
33
- class Detect(nn.Module):
34
- stride = None # strides computed during build
35
- onnx_dynamic = False # ONNX export parameter
36
-
37
- def __init__(self, nc=80, anchors=(), ch=(), inplace=True): # detection layer
38
- super().__init__()
39
- self.nc = nc # number of classes
40
- self.no = nc + 5 # number of outputs per anchor
41
- self.nl = len(anchors) # number of detection layers
42
- self.na = len(anchors[0]) // 2 # number of anchors
43
- self.grid = [torch.zeros(1)] * self.nl # init grid
44
- self.anchor_grid = [torch.zeros(1)] * self.nl # init anchor grid
45
- self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2)) # shape(nl,na,2)
46
- self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
47
- self.inplace = inplace # use in-place ops (e.g. slice assignment)
48
-
49
- def forward(self, x):
50
- z = [] # inference output
51
- for i in range(self.nl):
52
- x[i] = self.m[i](x[i]) # conv
53
- bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
54
- x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
55
-
56
- if not self.training: # inference
57
- if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
58
- self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
59
-
60
- y = x[i].sigmoid()
61
- if self.inplace:
62
- y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i] # xy
63
- y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
64
- else: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
65
- xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i] # xy
66
- wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
67
- y = torch.cat((xy, wh, y[..., 4:]), -1)
68
- z.append(y.view(bs, -1, self.no))
69
-
70
- return x if self.training else (torch.cat(z, 1), x)
71
-
72
- def _make_grid(self, nx=20, ny=20, i=0):
73
- d = self.anchors[i].device
74
- shape = 1, self.na, ny, nx, 2 # grid shape
75
- if check_version(torch.__version__, '1.10.0'): # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
76
- yv, xv = torch.meshgrid(torch.arange(ny, device=d), torch.arange(nx, device=d), indexing='ij')
77
- else:
78
- yv, xv = torch.meshgrid(torch.arange(ny, device=d), torch.arange(nx, device=d))
79
- grid = torch.stack((xv, yv), 2).expand(shape).float()
80
- anchor_grid = (self.anchors[i] * self.stride[i]).view((1, self.na, 1, 1, 2)).expand(shape).float()
81
- return grid, anchor_grid
82
-
83
-
84
- class Model(nn.Module):
85
- def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None): # model, input channels, number of classes
86
- super().__init__()
87
- if isinstance(cfg, dict):
88
- self.yaml = cfg # model dict
89
- else: # is *.yaml
90
- import yaml # for torch hub
91
- self.yaml_file = Path(cfg).name
92
- with open(cfg, encoding='ascii', errors='ignore') as f:
93
- self.yaml = yaml.safe_load(f) # model dict
94
-
95
- # Define model
96
- ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels
97
- if nc and nc != self.yaml['nc']:
98
- LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
99
- self.yaml['nc'] = nc # override yaml value
100
- if anchors:
101
- LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}')
102
- self.yaml['anchors'] = round(anchors) # override yaml value
103
- self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist
104
- self.names = [str(i) for i in range(self.yaml['nc'])] # default names
105
- self.inplace = self.yaml.get('inplace', True)
106
-
107
- # Build strides, anchors
108
- m = self.model[-1] # Detect()
109
- if isinstance(m, Detect):
110
- s = 256 # 2x min stride
111
- m.inplace = self.inplace
112
- m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
113
- check_anchor_order(m) # must be in pixel-space (not grid-space)
114
- m.anchors /= m.stride.view(-1, 1, 1)
115
- self.stride = m.stride
116
- self._initialize_biases() # only run once
117
-
118
- # Init weights, biases
119
- initialize_weights(self)
120
- self.info()
121
- LOGGER.info('')
122
-
123
- def forward(self, x, augment=False, profile=False, visualize=False):
124
- if augment:
125
- return self._forward_augment(x) # augmented inference, None
126
- return self._forward_once(x, profile, visualize) # single-scale inference, train
127
-
128
- def _forward_augment(self, x):
129
- img_size = x.shape[-2:] # height, width
130
- s = [1, 0.83, 0.67] # scales
131
- f = [None, 3, None] # flips (2-ud, 3-lr)
132
- y = [] # outputs
133
- for si, fi in zip(s, f):
134
- xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
135
- yi = self._forward_once(xi)[0] # forward
136
- # cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save
137
- yi = self._descale_pred(yi, fi, si, img_size)
138
- y.append(yi)
139
- y = self._clip_augmented(y) # clip augmented tails
140
- return torch.cat(y, 1), None # augmented inference, train
141
-
142
- def _forward_once(self, x, profile=False, visualize=False):
143
- y, dt = [], [] # outputs
144
- for m in self.model:
145
- if m.f != -1: # if not from previous layer
146
- x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
147
- if profile:
148
- self._profile_one_layer(m, x, dt)
149
- x = m(x) # run
150
- y.append(x if m.i in self.save else None) # save output
151
- if visualize:
152
- feature_visualization(x, m.type, m.i, save_dir=visualize)
153
- return x
154
-
155
- def _descale_pred(self, p, flips, scale, img_size):
156
- # de-scale predictions following augmented inference (inverse operation)
157
- if self.inplace:
158
- p[..., :4] /= scale # de-scale
159
- if flips == 2:
160
- p[..., 1] = img_size[0] - p[..., 1] # de-flip ud
161
- elif flips == 3:
162
- p[..., 0] = img_size[1] - p[..., 0] # de-flip lr
163
- else:
164
- x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale # de-scale
165
- if flips == 2:
166
- y = img_size[0] - y # de-flip ud
167
- elif flips == 3:
168
- x = img_size[1] - x # de-flip lr
169
- p = torch.cat((x, y, wh, p[..., 4:]), -1)
170
- return p
171
-
172
- def _clip_augmented(self, y):
173
- # Clip YOLOv5 augmented inference tails
174
- nl = self.model[-1].nl # number of detection layers (P3-P5)
175
- g = sum(4 ** x for x in range(nl)) # grid points
176
- e = 1 # exclude layer count
177
- i = (y[0].shape[1] // g) * sum(4 ** x for x in range(e)) # indices
178
- y[0] = y[0][:, :-i] # large
179
- i = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e)) # indices
180
- y[-1] = y[-1][:, i:] # small
181
- return y
182
-
183
- def _profile_one_layer(self, m, x, dt):
184
- c = isinstance(m, Detect) # is final layer, copy input as inplace fix
185
- o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPs
186
- t = time_sync()
187
- for _ in range(10):
188
- m(x.copy() if c else x)
189
- dt.append((time_sync() - t) * 100)
190
- if m == self.model[0]:
191
- LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} {'module'}")
192
- LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f} {m.type}')
193
- if c:
194
- LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s} Total")
195
-
196
- def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
197
- # https://arxiv.org/abs/1708.02002 section 3.3
198
- # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
199
- m = self.model[-1] # Detect() module
200
- for mi, s in zip(m.m, m.stride): # from
201
- b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
202
- b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
203
- b.data[:, 5:] += math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # cls
204
- mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
205
-
206
- def _print_biases(self):
207
- m = self.model[-1] # Detect() module
208
- for mi in m.m: # from
209
- b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85)
210
- LOGGER.info(
211
- ('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))
212
-
213
- # def _print_weights(self):
214
- # for m in self.model.modules():
215
- # if type(m) is Bottleneck:
216
- # LOGGER.info('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights
217
-
218
- def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
219
- LOGGER.info('Fusing layers... ')
220
- for m in self.model.modules():
221
- if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):
222
- m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
223
- delattr(m, 'bn') # remove batchnorm
224
- m.forward = m.forward_fuse # update forward
225
- self.info()
226
- return self
227
-
228
- def info(self, verbose=False, img_size=640): # print model information
229
- model_info(self, verbose, img_size)
230
-
231
- def _apply(self, fn):
232
- # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
233
- self = super()._apply(fn)
234
- m = self.model[-1] # Detect()
235
- if isinstance(m, Detect):
236
- m.stride = fn(m.stride)
237
- m.grid = list(map(fn, m.grid))
238
- if isinstance(m.anchor_grid, list):
239
- m.anchor_grid = list(map(fn, m.anchor_grid))
240
- return self
241
-
242
-
243
- def parse_model(d, ch): # model_dict, input_channels(3)
244
- LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}")
245
- anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
246
- na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
247
- no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
248
-
249
- layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
250
- for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
251
- m = eval(m) if isinstance(m, str) else m # eval strings
252
- for j, a in enumerate(args):
253
- try:
254
- args[j] = eval(a) if isinstance(a, str) else a # eval strings
255
- except NameError:
256
- pass
257
-
258
- n = n_ = max(round(n * gd), 1) if n > 1 else n # depth gain
259
- if m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
260
- BottleneckCSP, C3, C3TR, C3SPP, C3Ghost]:
261
- c1, c2 = ch[f], args[0]
262
- if c2 != no: # if not output
263
- c2 = make_divisible(c2 * gw, 8)
264
-
265
- args = [c1, c2, *args[1:]]
266
- if m in [BottleneckCSP, C3, C3TR, C3Ghost]:
267
- args.insert(2, n) # number of repeats
268
- n = 1
269
- elif m is nn.BatchNorm2d:
270
- args = [ch[f]]
271
- elif m is Concat:
272
- c2 = sum(ch[x] for x in f)
273
- elif m is Detect:
274
- args.append([ch[x] for x in f])
275
- if isinstance(args[1], int): # number of anchors
276
- args[1] = [list(range(args[1] * 2))] * len(f)
277
- elif m is Contract:
278
- c2 = ch[f] * args[0] ** 2
279
- elif m is Expand:
280
- c2 = ch[f] // args[0] ** 2
281
- else:
282
- c2 = ch[f]
283
-
284
- m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
285
- t = str(m)[8:-2].replace('__main__.', '') # module type
286
- np = sum(x.numel() for x in m_.parameters()) # number params
287
- m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
288
- LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f} {t:<40}{str(args):<30}') # print
289
- save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
290
- layers.append(m_)
291
- if i == 0:
292
- ch = []
293
- ch.append(c2)
294
- return nn.Sequential(*layers), sorted(save)
295
-
296
-
297
- if __name__ == '__main__':
298
- parser = argparse.ArgumentParser()
299
- parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml')
300
- parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
301
- parser.add_argument('--profile', action='store_true', help='profile model speed')
302
- parser.add_argument('--test', action='store_true', help='test all yolo*.yaml')
303
- opt = parser.parse_args()
304
- opt.cfg = check_yaml(opt.cfg) # check YAML
305
- print_args(FILE.stem, opt)
306
- device = select_device(opt.device)
307
-
308
- # Create model
309
- model = Model(opt.cfg).to(device)
310
- model.train()
311
-
312
- # Profile
313
- if opt.profile:
314
- img = torch.rand(8 if torch.cuda.is_available() else 1, 3, 640, 640).to(device)
315
- y = model(img, profile=True)
316
-
317
- # Test all models
318
- if opt.test:
319
- for cfg in Path(ROOT / 'models').rglob('yolo*.yaml'):
320
- try:
321
- _ = Model(cfg)
322
- except Exception as e:
323
- print(f'Error in {cfg}: {e}')
324
-
325
- # Tensorboard (not working https://github.com/ultralytics/yolov5/issues/2898)
326
- # from torch.utils.tensorboard import SummaryWriter
327
- # tb_writer = SummaryWriter('.')
328
- # LOGGER.info("Run 'tensorboard --logdir=models' to view tensorboard at http://localhost:6006/")
329
- # tb_writer.add_graph(torch.jit.trace(model, img, strict=False), []) # add model graph
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ultralytics/yolov5/models/yolov5l.yaml DELETED
@@ -1,48 +0,0 @@
1
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
-
3
- # Parameters
4
- nc: 80 # number of classes
5
- depth_multiple: 1.0 # model depth multiple
6
- width_multiple: 1.0 # layer channel multiple
7
- anchors:
8
- - [10,13, 16,30, 33,23] # P3/8
9
- - [30,61, 62,45, 59,119] # P4/16
10
- - [116,90, 156,198, 373,326] # P5/32
11
-
12
- # YOLOv5 v6.0 backbone
13
- backbone:
14
- # [from, number, module, args]
15
- [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
16
- [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17
- [-1, 3, C3, [128]],
18
- [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19
- [-1, 6, C3, [256]],
20
- [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21
- [-1, 9, C3, [512]],
22
- [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23
- [-1, 3, C3, [1024]],
24
- [-1, 1, SPPF, [1024, 5]], # 9
25
- ]
26
-
27
- # YOLOv5 v6.0 head
28
- head:
29
- [[-1, 1, Conv, [512, 1, 1]],
30
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31
- [[-1, 6], 1, Concat, [1]], # cat backbone P4
32
- [-1, 3, C3, [512, False]], # 13
33
-
34
- [-1, 1, Conv, [256, 1, 1]],
35
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36
- [[-1, 4], 1, Concat, [1]], # cat backbone P3
37
- [-1, 3, C3, [256, False]], # 17 (P3/8-small)
38
-
39
- [-1, 1, Conv, [256, 3, 2]],
40
- [[-1, 14], 1, Concat, [1]], # cat head P4
41
- [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
42
-
43
- [-1, 1, Conv, [512, 3, 2]],
44
- [[-1, 10], 1, Concat, [1]], # cat head P5
45
- [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
46
-
47
- [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ultralytics/yolov5/models/yolov5m.yaml DELETED
@@ -1,48 +0,0 @@
1
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
-
3
- # Parameters
4
- nc: 80 # number of classes
5
- depth_multiple: 0.67 # model depth multiple
6
- width_multiple: 0.75 # layer channel multiple
7
- anchors:
8
- - [10,13, 16,30, 33,23] # P3/8
9
- - [30,61, 62,45, 59,119] # P4/16
10
- - [116,90, 156,198, 373,326] # P5/32
11
-
12
- # YOLOv5 v6.0 backbone
13
- backbone:
14
- # [from, number, module, args]
15
- [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
16
- [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17
- [-1, 3, C3, [128]],
18
- [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19
- [-1, 6, C3, [256]],
20
- [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21
- [-1, 9, C3, [512]],
22
- [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23
- [-1, 3, C3, [1024]],
24
- [-1, 1, SPPF, [1024, 5]], # 9
25
- ]
26
-
27
- # YOLOv5 v6.0 head
28
- head:
29
- [[-1, 1, Conv, [512, 1, 1]],
30
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31
- [[-1, 6], 1, Concat, [1]], # cat backbone P4
32
- [-1, 3, C3, [512, False]], # 13
33
-
34
- [-1, 1, Conv, [256, 1, 1]],
35
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36
- [[-1, 4], 1, Concat, [1]], # cat backbone P3
37
- [-1, 3, C3, [256, False]], # 17 (P3/8-small)
38
-
39
- [-1, 1, Conv, [256, 3, 2]],
40
- [[-1, 14], 1, Concat, [1]], # cat head P4
41
- [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
42
-
43
- [-1, 1, Conv, [512, 3, 2]],
44
- [[-1, 10], 1, Concat, [1]], # cat head P5
45
- [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
46
-
47
- [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ultralytics/yolov5/models/yolov5n.yaml DELETED
@@ -1,48 +0,0 @@
1
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
-
3
- # Parameters
4
- nc: 80 # number of classes
5
- depth_multiple: 0.33 # model depth multiple
6
- width_multiple: 0.25 # layer channel multiple
7
- anchors:
8
- - [10,13, 16,30, 33,23] # P3/8
9
- - [30,61, 62,45, 59,119] # P4/16
10
- - [116,90, 156,198, 373,326] # P5/32
11
-
12
- # YOLOv5 v6.0 backbone
13
- backbone:
14
- # [from, number, module, args]
15
- [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
16
- [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17
- [-1, 3, C3, [128]],
18
- [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19
- [-1, 6, C3, [256]],
20
- [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21
- [-1, 9, C3, [512]],
22
- [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23
- [-1, 3, C3, [1024]],
24
- [-1, 1, SPPF, [1024, 5]], # 9
25
- ]
26
-
27
- # YOLOv5 v6.0 head
28
- head:
29
- [[-1, 1, Conv, [512, 1, 1]],
30
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31
- [[-1, 6], 1, Concat, [1]], # cat backbone P4
32
- [-1, 3, C3, [512, False]], # 13
33
-
34
- [-1, 1, Conv, [256, 1, 1]],
35
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36
- [[-1, 4], 1, Concat, [1]], # cat backbone P3
37
- [-1, 3, C3, [256, False]], # 17 (P3/8-small)
38
-
39
- [-1, 1, Conv, [256, 3, 2]],
40
- [[-1, 14], 1, Concat, [1]], # cat head P4
41
- [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
42
-
43
- [-1, 1, Conv, [512, 3, 2]],
44
- [[-1, 10], 1, Concat, [1]], # cat head P5
45
- [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
46
-
47
- [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ultralytics/yolov5/models/yolov5s.yaml DELETED
@@ -1,48 +0,0 @@
1
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
-
3
- # Parameters
4
- nc: 80 # number of classes
5
- depth_multiple: 0.33 # model depth multiple
6
- width_multiple: 0.50 # layer channel multiple
7
- anchors:
8
- - [10,13, 16,30, 33,23] # P3/8
9
- - [30,61, 62,45, 59,119] # P4/16
10
- - [116,90, 156,198, 373,326] # P5/32
11
-
12
- # YOLOv5 v6.0 backbone
13
- backbone:
14
- # [from, number, module, args]
15
- [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
16
- [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17
- [-1, 3, C3, [128]],
18
- [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19
- [-1, 6, C3, [256]],
20
- [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21
- [-1, 9, C3, [512]],
22
- [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23
- [-1, 3, C3, [1024]],
24
- [-1, 1, SPPF, [1024, 5]], # 9
25
- ]
26
-
27
- # YOLOv5 v6.0 head
28
- head:
29
- [[-1, 1, Conv, [512, 1, 1]],
30
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31
- [[-1, 6], 1, Concat, [1]], # cat backbone P4
32
- [-1, 3, C3, [512, False]], # 13
33
-
34
- [-1, 1, Conv, [256, 1, 1]],
35
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36
- [[-1, 4], 1, Concat, [1]], # cat backbone P3
37
- [-1, 3, C3, [256, False]], # 17 (P3/8-small)
38
-
39
- [-1, 1, Conv, [256, 3, 2]],
40
- [[-1, 14], 1, Concat, [1]], # cat head P4
41
- [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
42
-
43
- [-1, 1, Conv, [512, 3, 2]],
44
- [[-1, 10], 1, Concat, [1]], # cat head P5
45
- [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
46
-
47
- [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ultralytics/yolov5/models/yolov5x.yaml DELETED
@@ -1,48 +0,0 @@
1
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
-
3
- # Parameters
4
- nc: 80 # number of classes
5
- depth_multiple: 1.33 # model depth multiple
6
- width_multiple: 1.25 # layer channel multiple
7
- anchors:
8
- - [10,13, 16,30, 33,23] # P3/8
9
- - [30,61, 62,45, 59,119] # P4/16
10
- - [116,90, 156,198, 373,326] # P5/32
11
-
12
- # YOLOv5 v6.0 backbone
13
- backbone:
14
- # [from, number, module, args]
15
- [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
16
- [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17
- [-1, 3, C3, [128]],
18
- [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19
- [-1, 6, C3, [256]],
20
- [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21
- [-1, 9, C3, [512]],
22
- [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23
- [-1, 3, C3, [1024]],
24
- [-1, 1, SPPF, [1024, 5]], # 9
25
- ]
26
-
27
- # YOLOv5 v6.0 head
28
- head:
29
- [[-1, 1, Conv, [512, 1, 1]],
30
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31
- [[-1, 6], 1, Concat, [1]], # cat backbone P4
32
- [-1, 3, C3, [512, False]], # 13
33
-
34
- [-1, 1, Conv, [256, 1, 1]],
35
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36
- [[-1, 4], 1, Concat, [1]], # cat backbone P3
37
- [-1, 3, C3, [256, False]], # 17 (P3/8-small)
38
-
39
- [-1, 1, Conv, [256, 3, 2]],
40
- [[-1, 14], 1, Concat, [1]], # cat head P4
41
- [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
42
-
43
- [-1, 1, Conv, [512, 3, 2]],
44
- [[-1, 10], 1, Concat, [1]], # cat head P5
45
- [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
46
-
47
- [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ultralytics/yolov5/utils/__init__.py DELETED
@@ -1,36 +0,0 @@
1
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
- """
3
- utils/initialization
4
- """
5
-
6
-
7
- def notebook_init(verbose=True):
8
- # Check system software and hardware
9
- print('Checking setup...')
10
-
11
- import os
12
- import shutil
13
-
14
- from utils.general import check_requirements, emojis, is_colab
15
- from utils.torch_utils import select_device # imports
16
-
17
- check_requirements(('psutil', 'IPython'))
18
- import psutil
19
- from IPython import display # to display images and clear console output
20
-
21
- if is_colab():
22
- shutil.rmtree('/content/sample_data', ignore_errors=True) # remove colab /sample_data directory
23
-
24
- # System info
25
- if verbose:
26
- gb = 1 << 30 # bytes to GiB (1024 ** 3)
27
- ram = psutil.virtual_memory().total
28
- total, used, free = shutil.disk_usage("/")
29
- display.clear_output()
30
- s = f'({os.cpu_count()} CPUs, {ram / gb:.1f} GB RAM, {(total - free) / gb:.1f}/{total / gb:.1f} GB disk)'
31
- else:
32
- s = ''
33
-
34
- select_device(newline=False)
35
- print(emojis(f'Setup complete ✅ {s}'))
36
- return display
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ultralytics/yolov5/utils/activations.py DELETED
@@ -1,101 +0,0 @@
1
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
- """
3
- Activation functions
4
- """
5
-
6
- import torch
7
- import torch.nn as nn
8
- import torch.nn.functional as F
9
-
10
-
11
- # SiLU https://arxiv.org/pdf/1606.08415.pdf ----------------------------------------------------------------------------
12
- class SiLU(nn.Module): # export-friendly version of nn.SiLU()
13
- @staticmethod
14
- def forward(x):
15
- return x * torch.sigmoid(x)
16
-
17
-
18
- class Hardswish(nn.Module): # export-friendly version of nn.Hardswish()
19
- @staticmethod
20
- def forward(x):
21
- # return x * F.hardsigmoid(x) # for TorchScript and CoreML
22
- return x * F.hardtanh(x + 3, 0.0, 6.0) / 6.0 # for TorchScript, CoreML and ONNX
23
-
24
-
25
- # Mish https://github.com/digantamisra98/Mish --------------------------------------------------------------------------
26
- class Mish(nn.Module):
27
- @staticmethod
28
- def forward(x):
29
- return x * F.softplus(x).tanh()
30
-
31
-
32
- class MemoryEfficientMish(nn.Module):
33
- class F(torch.autograd.Function):
34
- @staticmethod
35
- def forward(ctx, x):
36
- ctx.save_for_backward(x)
37
- return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x)))
38
-
39
- @staticmethod
40
- def backward(ctx, grad_output):
41
- x = ctx.saved_tensors[0]
42
- sx = torch.sigmoid(x)
43
- fx = F.softplus(x).tanh()
44
- return grad_output * (fx + x * sx * (1 - fx * fx))
45
-
46
- def forward(self, x):
47
- return self.F.apply(x)
48
-
49
-
50
- # FReLU https://arxiv.org/abs/2007.11824 -------------------------------------------------------------------------------
51
- class FReLU(nn.Module):
52
- def __init__(self, c1, k=3): # ch_in, kernel
53
- super().__init__()
54
- self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1, bias=False)
55
- self.bn = nn.BatchNorm2d(c1)
56
-
57
- def forward(self, x):
58
- return torch.max(x, self.bn(self.conv(x)))
59
-
60
-
61
- # ACON https://arxiv.org/pdf/2009.04759.pdf ----------------------------------------------------------------------------
62
- class AconC(nn.Module):
63
- r""" ACON activation (activate or not).
64
- AconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is a learnable parameter
65
- according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>.
66
- """
67
-
68
- def __init__(self, c1):
69
- super().__init__()
70
- self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
71
- self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
72
- self.beta = nn.Parameter(torch.ones(1, c1, 1, 1))
73
-
74
- def forward(self, x):
75
- dpx = (self.p1 - self.p2) * x
76
- return dpx * torch.sigmoid(self.beta * dpx) + self.p2 * x
77
-
78
-
79
- class MetaAconC(nn.Module):
80
- r""" ACON activation (activate or not).
81
- MetaAconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is generated by a small network
82
- according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>.
83
- """
84
-
85
- def __init__(self, c1, k=1, s=1, r=16): # ch_in, kernel, stride, r
86
- super().__init__()
87
- c2 = max(r, c1 // r)
88
- self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
89
- self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
90
- self.fc1 = nn.Conv2d(c1, c2, k, s, bias=True)
91
- self.fc2 = nn.Conv2d(c2, c1, k, s, bias=True)
92
- # self.bn1 = nn.BatchNorm2d(c2)
93
- # self.bn2 = nn.BatchNorm2d(c1)
94
-
95
- def forward(self, x):
96
- y = x.mean(dim=2, keepdims=True).mean(dim=3, keepdims=True)
97
- # batch-size 1 bug/instabilities https://github.com/ultralytics/yolov5/issues/2891
98
- # beta = torch.sigmoid(self.bn2(self.fc2(self.bn1(self.fc1(y))))) # bug/unstable
99
- beta = torch.sigmoid(self.fc2(self.fc1(y))) # bug patch BN layers removed
100
- dpx = (self.p1 - self.p2) * x
101
- return dpx * torch.sigmoid(beta * dpx) + self.p2 * x
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ultralytics/yolov5/utils/augmentations.py DELETED
@@ -1,277 +0,0 @@
1
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
- """
3
- Image augmentation functions
4
- """
5
-
6
- import math
7
- import random
8
-
9
- import cv2
10
- import numpy as np
11
-
12
- from utils.general import LOGGER, check_version, colorstr, resample_segments, segment2box
13
- from utils.metrics import bbox_ioa
14
-
15
-
16
- class Albumentations:
17
- # YOLOv5 Albumentations class (optional, only used if package is installed)
18
- def __init__(self):
19
- self.transform = None
20
- try:
21
- import albumentations as A
22
- check_version(A.__version__, '1.0.3', hard=True) # version requirement
23
-
24
- self.transform = A.Compose([
25
- A.Blur(p=0.01),
26
- A.MedianBlur(p=0.01),
27
- A.ToGray(p=0.01),
28
- A.CLAHE(p=0.01),
29
- A.RandomBrightnessContrast(p=0.0),
30
- A.RandomGamma(p=0.0),
31
- A.ImageCompression(quality_lower=75, p=0.0)],
32
- bbox_params=A.BboxParams(format='yolo', label_fields=['class_labels']))
33
-
34
- LOGGER.info(colorstr('albumentations: ') + ', '.join(f'{x}' for x in self.transform.transforms if x.p))
35
- except ImportError: # package not installed, skip
36
- pass
37
- except Exception as e:
38
- LOGGER.info(colorstr('albumentations: ') + f'{e}')
39
-
40
- def __call__(self, im, labels, p=1.0):
41
- if self.transform and random.random() < p:
42
- new = self.transform(image=im, bboxes=labels[:, 1:], class_labels=labels[:, 0]) # transformed
43
- im, labels = new['image'], np.array([[c, *b] for c, b in zip(new['class_labels'], new['bboxes'])])
44
- return im, labels
45
-
46
-
47
- def augment_hsv(im, hgain=0.5, sgain=0.5, vgain=0.5):
48
- # HSV color-space augmentation
49
- if hgain or sgain or vgain:
50
- r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains
51
- hue, sat, val = cv2.split(cv2.cvtColor(im, cv2.COLOR_BGR2HSV))
52
- dtype = im.dtype # uint8
53
-
54
- x = np.arange(0, 256, dtype=r.dtype)
55
- lut_hue = ((x * r[0]) % 180).astype(dtype)
56
- lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
57
- lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
58
-
59
- im_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val)))
60
- cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR, dst=im) # no return needed
61
-
62
-
63
- def hist_equalize(im, clahe=True, bgr=False):
64
- # Equalize histogram on BGR image 'im' with im.shape(n,m,3) and range 0-255
65
- yuv = cv2.cvtColor(im, cv2.COLOR_BGR2YUV if bgr else cv2.COLOR_RGB2YUV)
66
- if clahe:
67
- c = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
68
- yuv[:, :, 0] = c.apply(yuv[:, :, 0])
69
- else:
70
- yuv[:, :, 0] = cv2.equalizeHist(yuv[:, :, 0]) # equalize Y channel histogram
71
- return cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR if bgr else cv2.COLOR_YUV2RGB) # convert YUV image to RGB
72
-
73
-
74
- def replicate(im, labels):
75
- # Replicate labels
76
- h, w = im.shape[:2]
77
- boxes = labels[:, 1:].astype(int)
78
- x1, y1, x2, y2 = boxes.T
79
- s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels)
80
- for i in s.argsort()[:round(s.size * 0.5)]: # smallest indices
81
- x1b, y1b, x2b, y2b = boxes[i]
82
- bh, bw = y2b - y1b, x2b - x1b
83
- yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) # offset x, y
84
- x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh]
85
- im[y1a:y2a, x1a:x2a] = im[y1b:y2b, x1b:x2b] # im4[ymin:ymax, xmin:xmax]
86
- labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0)
87
-
88
- return im, labels
89
-
90
-
91
- def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
92
- # Resize and pad image while meeting stride-multiple constraints
93
- shape = im.shape[:2] # current shape [height, width]
94
- if isinstance(new_shape, int):
95
- new_shape = (new_shape, new_shape)
96
-
97
- # Scale ratio (new / old)
98
- r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
99
- if not scaleup: # only scale down, do not scale up (for better val mAP)
100
- r = min(r, 1.0)
101
-
102
- # Compute padding
103
- ratio = r, r # width, height ratios
104
- new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
105
- dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
106
- if auto: # minimum rectangle
107
- dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
108
- elif scaleFill: # stretch
109
- dw, dh = 0.0, 0.0
110
- new_unpad = (new_shape[1], new_shape[0])
111
- ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
112
-
113
- dw /= 2 # divide padding into 2 sides
114
- dh /= 2
115
-
116
- if shape[::-1] != new_unpad: # resize
117
- im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
118
- top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
119
- left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
120
- im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
121
- return im, ratio, (dw, dh)
122
-
123
-
124
- def random_perspective(im, targets=(), segments=(), degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0,
125
- border=(0, 0)):
126
- # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(0.1, 0.1), scale=(0.9, 1.1), shear=(-10, 10))
127
- # targets = [cls, xyxy]
128
-
129
- height = im.shape[0] + border[0] * 2 # shape(h,w,c)
130
- width = im.shape[1] + border[1] * 2
131
-
132
- # Center
133
- C = np.eye(3)
134
- C[0, 2] = -im.shape[1] / 2 # x translation (pixels)
135
- C[1, 2] = -im.shape[0] / 2 # y translation (pixels)
136
-
137
- # Perspective
138
- P = np.eye(3)
139
- P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y)
140
- P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x)
141
-
142
- # Rotation and Scale
143
- R = np.eye(3)
144
- a = random.uniform(-degrees, degrees)
145
- # a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
146
- s = random.uniform(1 - scale, 1 + scale)
147
- # s = 2 ** random.uniform(-scale, scale)
148
- R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
149
-
150
- # Shear
151
- S = np.eye(3)
152
- S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
153
- S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
154
-
155
- # Translation
156
- T = np.eye(3)
157
- T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels)
158
- T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels)
159
-
160
- # Combined rotation matrix
161
- M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT
162
- if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
163
- if perspective:
164
- im = cv2.warpPerspective(im, M, dsize=(width, height), borderValue=(114, 114, 114))
165
- else: # affine
166
- im = cv2.warpAffine(im, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
167
-
168
- # Visualize
169
- # import matplotlib.pyplot as plt
170
- # ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
171
- # ax[0].imshow(im[:, :, ::-1]) # base
172
- # ax[1].imshow(im2[:, :, ::-1]) # warped
173
-
174
- # Transform label coordinates
175
- n = len(targets)
176
- if n:
177
- use_segments = any(x.any() for x in segments)
178
- new = np.zeros((n, 4))
179
- if use_segments: # warp segments
180
- segments = resample_segments(segments) # upsample
181
- for i, segment in enumerate(segments):
182
- xy = np.ones((len(segment), 3))
183
- xy[:, :2] = segment
184
- xy = xy @ M.T # transform
185
- xy = xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2] # perspective rescale or affine
186
-
187
- # clip
188
- new[i] = segment2box(xy, width, height)
189
-
190
- else: # warp boxes
191
- xy = np.ones((n * 4, 3))
192
- xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
193
- xy = xy @ M.T # transform
194
- xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]).reshape(n, 8) # perspective rescale or affine
195
-
196
- # create new boxes
197
- x = xy[:, [0, 2, 4, 6]]
198
- y = xy[:, [1, 3, 5, 7]]
199
- new = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
200
-
201
- # clip
202
- new[:, [0, 2]] = new[:, [0, 2]].clip(0, width)
203
- new[:, [1, 3]] = new[:, [1, 3]].clip(0, height)
204
-
205
- # filter candidates
206
- i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01 if use_segments else 0.10)
207
- targets = targets[i]
208
- targets[:, 1:5] = new[i]
209
-
210
- return im, targets
211
-
212
-
213
- def copy_paste(im, labels, segments, p=0.5):
214
- # Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy)
215
- n = len(segments)
216
- if p and n:
217
- h, w, c = im.shape # height, width, channels
218
- im_new = np.zeros(im.shape, np.uint8)
219
- for j in random.sample(range(n), k=round(p * n)):
220
- l, s = labels[j], segments[j]
221
- box = w - l[3], l[2], w - l[1], l[4]
222
- ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
223
- if (ioa < 0.30).all(): # allow 30% obscuration of existing labels
224
- labels = np.concatenate((labels, [[l[0], *box]]), 0)
225
- segments.append(np.concatenate((w - s[:, 0:1], s[:, 1:2]), 1))
226
- cv2.drawContours(im_new, [segments[j].astype(np.int32)], -1, (255, 255, 255), cv2.FILLED)
227
-
228
- result = cv2.bitwise_and(src1=im, src2=im_new)
229
- result = cv2.flip(result, 1) # augment segments (flip left-right)
230
- i = result > 0 # pixels to replace
231
- # i[:, :] = result.max(2).reshape(h, w, 1) # act over ch
232
- im[i] = result[i] # cv2.imwrite('debug.jpg', im) # debug
233
-
234
- return im, labels, segments
235
-
236
-
237
- def cutout(im, labels, p=0.5):
238
- # Applies image cutout augmentation https://arxiv.org/abs/1708.04552
239
- if random.random() < p:
240
- h, w = im.shape[:2]
241
- scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction
242
- for s in scales:
243
- mask_h = random.randint(1, int(h * s)) # create random masks
244
- mask_w = random.randint(1, int(w * s))
245
-
246
- # box
247
- xmin = max(0, random.randint(0, w) - mask_w // 2)
248
- ymin = max(0, random.randint(0, h) - mask_h // 2)
249
- xmax = min(w, xmin + mask_w)
250
- ymax = min(h, ymin + mask_h)
251
-
252
- # apply random color mask
253
- im[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]
254
-
255
- # return unobscured labels
256
- if len(labels) and s > 0.03:
257
- box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
258
- ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
259
- labels = labels[ioa < 0.60] # remove >60% obscured labels
260
-
261
- return labels
262
-
263
-
264
- def mixup(im, labels, im2, labels2):
265
- # Applies MixUp augmentation https://arxiv.org/pdf/1710.09412.pdf
266
- r = np.random.beta(32.0, 32.0) # mixup ratio, alpha=beta=32.0
267
- im = (im * r + im2 * (1 - r)).astype(np.uint8)
268
- labels = np.concatenate((labels, labels2), 0)
269
- return im, labels
270
-
271
-
272
- def box_candidates(box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16): # box1(4,n), box2(4,n)
273
- # Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
274
- w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
275
- w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
276
- ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio
277
- return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) # candidates
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ultralytics/yolov5/utils/autoanchor.py DELETED
@@ -1,170 +0,0 @@
1
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
- """
3
- AutoAnchor utils
4
- """
5
-
6
- import random
7
-
8
- import numpy as np
9
- import torch
10
- import yaml
11
- from tqdm import tqdm
12
-
13
- from utils.general import LOGGER, colorstr, emojis
14
-
15
- PREFIX = colorstr('AutoAnchor: ')
16
-
17
-
18
- def check_anchor_order(m):
19
- # Check anchor order against stride order for YOLOv5 Detect() module m, and correct if necessary
20
- a = m.anchors.prod(-1).mean(-1).view(-1) # mean anchor area per output layer
21
- da = a[-1] - a[0] # delta a
22
- ds = m.stride[-1] - m.stride[0] # delta s
23
- if da and (da.sign() != ds.sign()): # same order
24
- LOGGER.info(f'{PREFIX}Reversing anchor order')
25
- m.anchors[:] = m.anchors.flip(0)
26
-
27
-
28
- def check_anchors(dataset, model, thr=4.0, imgsz=640):
29
- # Check anchor fit to data, recompute if necessary
30
- m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect()
31
- shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
32
- scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale
33
- wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float() # wh
34
-
35
- def metric(k): # compute metric
36
- r = wh[:, None] / k[None]
37
- x = torch.min(r, 1 / r).min(2)[0] # ratio metric
38
- best = x.max(1)[0] # best_x
39
- aat = (x > 1 / thr).float().sum(1).mean() # anchors above threshold
40
- bpr = (best > 1 / thr).float().mean() # best possible recall
41
- return bpr, aat
42
-
43
- stride = m.stride.to(m.anchors.device).view(-1, 1, 1) # model strides
44
- anchors = m.anchors.clone() * stride # current anchors
45
- bpr, aat = metric(anchors.cpu().view(-1, 2))
46
- s = f'\n{PREFIX}{aat:.2f} anchors/target, {bpr:.3f} Best Possible Recall (BPR). '
47
- if bpr > 0.98: # threshold to recompute
48
- LOGGER.info(emojis(f'{s}Current anchors are a good fit to dataset ✅'))
49
- else:
50
- LOGGER.info(emojis(f'{s}Anchors are a poor fit to dataset ⚠️, attempting to improve...'))
51
- na = m.anchors.numel() // 2 # number of anchors
52
- try:
53
- anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
54
- except Exception as e:
55
- LOGGER.info(f'{PREFIX}ERROR: {e}')
56
- new_bpr = metric(anchors)[0]
57
- if new_bpr > bpr: # replace anchors
58
- anchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors)
59
- m.anchors[:] = anchors.clone().view_as(m.anchors)
60
- check_anchor_order(m) # must be in pixel-space (not grid-space)
61
- m.anchors /= stride
62
- s = f'{PREFIX}Done ✅ (optional: update model *.yaml to use these anchors in the future)'
63
- else:
64
- s = f'{PREFIX}Done ⚠️ (original anchors better than new anchors, proceeding with original anchors)'
65
- LOGGER.info(emojis(s))
66
-
67
-
68
- def kmean_anchors(dataset='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
69
- """ Creates kmeans-evolved anchors from training dataset
70
-
71
- Arguments:
72
- dataset: path to data.yaml, or a loaded dataset
73
- n: number of anchors
74
- img_size: image size used for training
75
- thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0
76
- gen: generations to evolve anchors using genetic algorithm
77
- verbose: print all results
78
-
79
- Return:
80
- k: kmeans evolved anchors
81
-
82
- Usage:
83
- from utils.autoanchor import *; _ = kmean_anchors()
84
- """
85
- from scipy.cluster.vq import kmeans
86
-
87
- npr = np.random
88
- thr = 1 / thr
89
-
90
- def metric(k, wh): # compute metrics
91
- r = wh[:, None] / k[None]
92
- x = torch.min(r, 1 / r).min(2)[0] # ratio metric
93
- # x = wh_iou(wh, torch.tensor(k)) # iou metric
94
- return x, x.max(1)[0] # x, best_x
95
-
96
- def anchor_fitness(k): # mutation fitness
97
- _, best = metric(torch.tensor(k, dtype=torch.float32), wh)
98
- return (best * (best > thr).float()).mean() # fitness
99
-
100
- def print_results(k, verbose=True):
101
- k = k[np.argsort(k.prod(1))] # sort small to large
102
- x, best = metric(k, wh0)
103
- bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr
104
- s = f'{PREFIX}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr\n' \
105
- f'{PREFIX}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, ' \
106
- f'past_thr={x[x > thr].mean():.3f}-mean: '
107
- for i, x in enumerate(k):
108
- s += '%i,%i, ' % (round(x[0]), round(x[1]))
109
- if verbose:
110
- LOGGER.info(s[:-2])
111
- return k
112
-
113
- if isinstance(dataset, str): # *.yaml file
114
- with open(dataset, errors='ignore') as f:
115
- data_dict = yaml.safe_load(f) # model dict
116
- from utils.datasets import LoadImagesAndLabels
117
- dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True)
118
-
119
- # Get label wh
120
- shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
121
- wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh
122
-
123
- # Filter
124
- i = (wh0 < 3.0).any(1).sum()
125
- if i:
126
- LOGGER.info(f'{PREFIX}WARNING: Extremely small objects found: {i} of {len(wh0)} labels are < 3 pixels in size')
127
- wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels
128
- # wh = wh * (npr.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1
129
-
130
- # Kmeans init
131
- try:
132
- LOGGER.info(f'{PREFIX}Running kmeans for {n} anchors on {len(wh)} points...')
133
- assert n <= len(wh) # apply overdetermined constraint
134
- s = wh.std(0) # sigmas for whitening
135
- k = kmeans(wh / s, n, iter=30)[0] * s # points
136
- assert n == len(k) # kmeans may return fewer points than requested if wh is insufficient or too similar
137
- except Exception:
138
- LOGGER.warning(f'{PREFIX}WARNING: switching strategies from kmeans to random init')
139
- k = np.sort(npr.rand(n * 2)).reshape(n, 2) * img_size # random init
140
- wh, wh0 = (torch.tensor(x, dtype=torch.float32) for x in (wh, wh0))
141
- k = print_results(k, verbose=False)
142
-
143
- # Plot
144
- # k, d = [None] * 20, [None] * 20
145
- # for i in tqdm(range(1, 21)):
146
- # k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance
147
- # fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True)
148
- # ax = ax.ravel()
149
- # ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.')
150
- # fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh
151
- # ax[0].hist(wh[wh[:, 0]<100, 0],400)
152
- # ax[1].hist(wh[wh[:, 1]<100, 1],400)
153
- # fig.savefig('wh.png', dpi=200)
154
-
155
- # Evolve
156
- f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma
157
- pbar = tqdm(range(gen), bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar
158
- for _ in pbar:
159
- v = np.ones(sh)
160
- while (v == 1).all(): # mutate until a change occurs (prevent duplicates)
161
- v = ((npr.random(sh) < mp) * random.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
162
- kg = (k.copy() * v).clip(min=2.0)
163
- fg = anchor_fitness(kg)
164
- if fg > f:
165
- f, k = fg, kg.copy()
166
- pbar.desc = f'{PREFIX}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}'
167
- if verbose:
168
- print_results(k, verbose)
169
-
170
- return print_results(k)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ultralytics/yolov5/utils/autobatch.py DELETED
@@ -1,58 +0,0 @@
1
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
- """
3
- Auto-batch utils
4
- """
5
-
6
- from copy import deepcopy
7
-
8
- import numpy as np
9
- import torch
10
- from torch.cuda import amp
11
-
12
- from utils.general import LOGGER, colorstr
13
- from utils.torch_utils import profile
14
-
15
-
16
- def check_train_batch_size(model, imgsz=640):
17
- # Check YOLOv5 training batch size
18
- with amp.autocast():
19
- return autobatch(deepcopy(model).train(), imgsz) # compute optimal batch size
20
-
21
-
22
- def autobatch(model, imgsz=640, fraction=0.9, batch_size=16):
23
- # Automatically estimate best batch size to use `fraction` of available CUDA memory
24
- # Usage:
25
- # import torch
26
- # from utils.autobatch import autobatch
27
- # model = torch.hub.load('ultralytics/yolov5', 'yolov5s', autoshape=False)
28
- # print(autobatch(model))
29
-
30
- prefix = colorstr('AutoBatch: ')
31
- LOGGER.info(f'{prefix}Computing optimal batch size for --imgsz {imgsz}')
32
- device = next(model.parameters()).device # get model device
33
- if device.type == 'cpu':
34
- LOGGER.info(f'{prefix}CUDA not detected, using default CPU batch-size {batch_size}')
35
- return batch_size
36
-
37
- gb = 1 << 30 # bytes to GiB (1024 ** 3)
38
- d = str(device).upper() # 'CUDA:0'
39
- properties = torch.cuda.get_device_properties(device) # device properties
40
- t = properties.total_memory / gb # (GiB)
41
- r = torch.cuda.memory_reserved(device) / gb # (GiB)
42
- a = torch.cuda.memory_allocated(device) / gb # (GiB)
43
- f = t - (r + a) # free inside reserved
44
- LOGGER.info(f'{prefix}{d} ({properties.name}) {t:.2f}G total, {r:.2f}G reserved, {a:.2f}G allocated, {f:.2f}G free')
45
-
46
- batch_sizes = [1, 2, 4, 8, 16]
47
- try:
48
- img = [torch.zeros(b, 3, imgsz, imgsz) for b in batch_sizes]
49
- y = profile(img, model, n=3, device=device)
50
- except Exception as e:
51
- LOGGER.warning(f'{prefix}{e}')
52
-
53
- y = [x[2] for x in y if x] # memory [2]
54
- batch_sizes = batch_sizes[:len(y)]
55
- p = np.polyfit(batch_sizes, y, deg=1) # first degree polynomial fit
56
- b = int((f * fraction - p[1]) / p[0]) # y intercept (optimal batch size)
57
- LOGGER.info(f'{prefix}Using batch-size {b} for {d} {t * fraction:.2f}G/{t:.2f}G ({fraction * 100:.0f}%)')
58
- return b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ultralytics/yolov5/utils/aws/__init__.py DELETED
File without changes
ultralytics/yolov5/utils/aws/mime.sh DELETED
@@ -1,26 +0,0 @@
1
- # AWS EC2 instance startup 'MIME' script https://aws.amazon.com/premiumsupport/knowledge-center/execute-user-data-ec2/
2
- # This script will run on every instance restart, not only on first start
3
- # --- DO NOT COPY ABOVE COMMENTS WHEN PASTING INTO USERDATA ---
4
-
5
- Content-Type: multipart/mixed; boundary="//"
6
- MIME-Version: 1.0
7
-
8
- --//
9
- Content-Type: text/cloud-config; charset="us-ascii"
10
- MIME-Version: 1.0
11
- Content-Transfer-Encoding: 7bit
12
- Content-Disposition: attachment; filename="cloud-config.txt"
13
-
14
- #cloud-config
15
- cloud_final_modules:
16
- - [scripts-user, always]
17
-
18
- --//
19
- Content-Type: text/x-shellscript; charset="us-ascii"
20
- MIME-Version: 1.0
21
- Content-Transfer-Encoding: 7bit
22
- Content-Disposition: attachment; filename="userdata.txt"
23
-
24
- #!/bin/bash
25
- # --- paste contents of userdata.sh here ---
26
- --//
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ultralytics/yolov5/utils/aws/resume.py DELETED
@@ -1,40 +0,0 @@
1
- # Resume all interrupted trainings in yolov5/ dir including DDP trainings
2
- # Usage: $ python utils/aws/resume.py
3
-
4
- import os
5
- import sys
6
- from pathlib import Path
7
-
8
- import torch
9
- import yaml
10
-
11
- FILE = Path(__file__).resolve()
12
- ROOT = FILE.parents[2] # YOLOv5 root directory
13
- if str(ROOT) not in sys.path:
14
- sys.path.append(str(ROOT)) # add ROOT to PATH
15
-
16
- port = 0 # --master_port
17
- path = Path('').resolve()
18
- for last in path.rglob('*/**/last.pt'):
19
- ckpt = torch.load(last)
20
- if ckpt['optimizer'] is None:
21
- continue
22
-
23
- # Load opt.yaml
24
- with open(last.parent.parent / 'opt.yaml', errors='ignore') as f:
25
- opt = yaml.safe_load(f)
26
-
27
- # Get device count
28
- d = opt['device'].split(',') # devices
29
- nd = len(d) # number of devices
30
- ddp = nd > 1 or (nd == 0 and torch.cuda.device_count() > 1) # distributed data parallel
31
-
32
- if ddp: # multi-GPU
33
- port += 1
34
- cmd = f'python -m torch.distributed.run --nproc_per_node {nd} --master_port {port} train.py --resume {last}'
35
- else: # single-GPU
36
- cmd = f'python train.py --resume {last}'
37
-
38
- cmd += ' > /dev/null 2>&1 &' # redirect output to dev/null and run in daemon thread
39
- print(cmd)
40
- os.system(cmd)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ultralytics/yolov5/utils/aws/userdata.sh DELETED
@@ -1,27 +0,0 @@
1
- #!/bin/bash
2
- # AWS EC2 instance startup script https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html
3
- # This script will run only once on first instance start (for a re-start script see mime.sh)
4
- # /home/ubuntu (ubuntu) or /home/ec2-user (amazon-linux) is working dir
5
- # Use >300 GB SSD
6
-
7
- cd home/ubuntu
8
- if [ ! -d yolov5 ]; then
9
- echo "Running first-time script." # install dependencies, download COCO, pull Docker
10
- git clone https://github.com/ultralytics/yolov5 -b master && sudo chmod -R 777 yolov5
11
- cd yolov5
12
- bash data/scripts/get_coco.sh && echo "COCO done." &
13
- sudo docker pull ultralytics/yolov5:latest && echo "Docker done." &
14
- python -m pip install --upgrade pip && pip install -r requirements.txt && python detect.py && echo "Requirements done." &
15
- wait && echo "All tasks done." # finish background tasks
16
- else
17
- echo "Running re-start script." # resume interrupted runs
18
- i=0
19
- list=$(sudo docker ps -qa) # container list i.e. $'one\ntwo\nthree\nfour'
20
- while IFS= read -r id; do
21
- ((i++))
22
- echo "restarting container $i: $id"
23
- sudo docker start $id
24
- # sudo docker exec -it $id python train.py --resume # single-GPU
25
- sudo docker exec -d $id python utils/aws/resume.py # multi-scenario
26
- done <<<"$list"
27
- fi
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ultralytics/yolov5/utils/benchmarks.py DELETED
@@ -1,104 +0,0 @@
1
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
- """
3
- Run YOLOv5 benchmarks on all supported export formats
4
-
5
- Format | `export.py --include` | Model
6
- --- | --- | ---
7
- PyTorch | - | yolov5s.pt
8
- TorchScript | `torchscript` | yolov5s.torchscript
9
- ONNX | `onnx` | yolov5s.onnx
10
- OpenVINO | `openvino` | yolov5s_openvino_model/
11
- TensorRT | `engine` | yolov5s.engine
12
- CoreML | `coreml` | yolov5s.mlmodel
13
- TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/
14
- TensorFlow GraphDef | `pb` | yolov5s.pb
15
- TensorFlow Lite | `tflite` | yolov5s.tflite
16
- TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite
17
- TensorFlow.js | `tfjs` | yolov5s_web_model/
18
-
19
- Requirements:
20
- $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU
21
- $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU
22
- $ pip install -U nvidia-tensorrt --index-url https://pypi.ngc.nvidia.com # TensorRT
23
-
24
- Usage:
25
- $ python utils/benchmarks.py --weights yolov5s.pt --img 640
26
- """
27
-
28
- import argparse
29
- import sys
30
- import time
31
- from pathlib import Path
32
-
33
- import pandas as pd
34
-
35
- FILE = Path(__file__).resolve()
36
- ROOT = FILE.parents[1] # YOLOv5 root directory
37
- if str(ROOT) not in sys.path:
38
- sys.path.append(str(ROOT)) # add ROOT to PATH
39
- # ROOT = ROOT.relative_to(Path.cwd()) # relative
40
-
41
- import export
42
- import val
43
- from utils import notebook_init
44
- from utils.general import LOGGER, print_args
45
- from utils.torch_utils import select_device
46
-
47
-
48
- def run(weights=ROOT / 'yolov5s.pt', # weights path
49
- imgsz=640, # inference size (pixels)
50
- batch_size=1, # batch size
51
- data=ROOT / 'data/coco128.yaml', # dataset.yaml path
52
- device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
53
- half=False, # use FP16 half-precision inference
54
- ):
55
- y, t = [], time.time()
56
- formats = export.export_formats()
57
- device = select_device(device)
58
- for i, (name, f, suffix, gpu) in formats.iterrows(): # index, (name, file, suffix, gpu-capable)
59
- try:
60
- if device.type != 'cpu':
61
- assert gpu, f'{name} inference not supported on GPU'
62
- if f == '-':
63
- w = weights # PyTorch format
64
- else:
65
- w = export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1] # all others
66
- assert suffix in str(w), 'export failed'
67
- result = val.run(data, w, batch_size, imgsz, plots=False, device=device, task='benchmark', half=half)
68
- metrics = result[0] # metrics (mp, mr, map50, map, *losses(box, obj, cls))
69
- speeds = result[2] # times (preprocess, inference, postprocess)
70
- y.append([name, round(metrics[3], 4), round(speeds[1], 2)]) # mAP, t_inference
71
- except Exception as e:
72
- LOGGER.warning(f'WARNING: Benchmark failure for {name}: {e}')
73
- y.append([name, None, None]) # mAP, t_inference
74
-
75
- # Print results
76
- LOGGER.info('\n')
77
- parse_opt()
78
- notebook_init() # print system info
79
- py = pd.DataFrame(y, columns=['Format', '[email protected]:0.95', 'Inference time (ms)'])
80
- LOGGER.info(f'\nBenchmarks complete ({time.time() - t:.2f}s)')
81
- LOGGER.info(str(py))
82
- return py
83
-
84
-
85
- def parse_opt():
86
- parser = argparse.ArgumentParser()
87
- parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='weights path')
88
- parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
89
- parser.add_argument('--batch-size', type=int, default=1, help='batch size')
90
- parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
91
- parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
92
- parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
93
- opt = parser.parse_args()
94
- print_args(FILE.stem, opt)
95
- return opt
96
-
97
-
98
- def main(opt):
99
- run(**vars(opt))
100
-
101
-
102
- if __name__ == "__main__":
103
- opt = parse_opt()
104
- main(opt)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ultralytics/yolov5/utils/callbacks.py DELETED
@@ -1,78 +0,0 @@
1
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
- """
3
- Callback utils
4
- """
5
-
6
-
7
- class Callbacks:
8
- """"
9
- Handles all registered callbacks for YOLOv5 Hooks
10
- """
11
-
12
- def __init__(self):
13
- # Define the available callbacks
14
- self._callbacks = {
15
- 'on_pretrain_routine_start': [],
16
- 'on_pretrain_routine_end': [],
17
-
18
- 'on_train_start': [],
19
- 'on_train_epoch_start': [],
20
- 'on_train_batch_start': [],
21
- 'optimizer_step': [],
22
- 'on_before_zero_grad': [],
23
- 'on_train_batch_end': [],
24
- 'on_train_epoch_end': [],
25
-
26
- 'on_val_start': [],
27
- 'on_val_batch_start': [],
28
- 'on_val_image_end': [],
29
- 'on_val_batch_end': [],
30
- 'on_val_end': [],
31
-
32
- 'on_fit_epoch_end': [], # fit = train + val
33
- 'on_model_save': [],
34
- 'on_train_end': [],
35
- 'on_params_update': [],
36
- 'teardown': [],
37
- }
38
- self.stop_training = False # set True to interrupt training
39
-
40
- def register_action(self, hook, name='', callback=None):
41
- """
42
- Register a new action to a callback hook
43
-
44
- Args:
45
- hook The callback hook name to register the action to
46
- name The name of the action for later reference
47
- callback The callback to fire
48
- """
49
- assert hook in self._callbacks, f"hook '{hook}' not found in callbacks {self._callbacks}"
50
- assert callable(callback), f"callback '{callback}' is not callable"
51
- self._callbacks[hook].append({'name': name, 'callback': callback})
52
-
53
- def get_registered_actions(self, hook=None):
54
- """"
55
- Returns all the registered actions by callback hook
56
-
57
- Args:
58
- hook The name of the hook to check, defaults to all
59
- """
60
- if hook:
61
- return self._callbacks[hook]
62
- else:
63
- return self._callbacks
64
-
65
- def run(self, hook, *args, **kwargs):
66
- """
67
- Loop through the registered actions and fire all callbacks
68
-
69
- Args:
70
- hook The name of the hook to check, defaults to all
71
- args Arguments to receive from YOLOv5
72
- kwargs Keyword Arguments to receive from YOLOv5
73
- """
74
-
75
- assert hook in self._callbacks, f"hook '{hook}' not found in callbacks {self._callbacks}"
76
-
77
- for logger in self._callbacks[hook]:
78
- logger['callback'](*args, **kwargs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ultralytics/yolov5/utils/datasets.py DELETED
@@ -1,1039 +0,0 @@
1
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
- """
3
- Dataloaders and dataset utils
4
- """
5
-
6
- import glob
7
- import hashlib
8
- import json
9
- import math
10
- import os
11
- import random
12
- import shutil
13
- import time
14
- from itertools import repeat
15
- from multiprocessing.pool import Pool, ThreadPool
16
- from pathlib import Path
17
- from threading import Thread
18
- from urllib.parse import urlparse
19
- from zipfile import ZipFile
20
-
21
- import cv2
22
- import numpy as np
23
- import torch
24
- import torch.nn.functional as F
25
- import yaml
26
- from PIL import ExifTags, Image, ImageOps
27
- from torch.utils.data import DataLoader, Dataset, dataloader, distributed
28
- from tqdm import tqdm
29
-
30
- from utils.augmentations import Albumentations, augment_hsv, copy_paste, letterbox, mixup, random_perspective
31
- from utils.general import (DATASETS_DIR, LOGGER, NUM_THREADS, check_dataset, check_requirements, check_yaml, clean_str,
32
- segments2boxes, xyn2xy, xywh2xyxy, xywhn2xyxy, xyxy2xywhn)
33
- from utils.torch_utils import torch_distributed_zero_first
34
-
35
- # Parameters
36
- HELP_URL = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
37
- IMG_FORMATS = 'bmp', 'dng', 'jpeg', 'jpg', 'mpo', 'png', 'tif', 'tiff', 'webp' # include image suffixes
38
- VID_FORMATS = 'asf', 'avi', 'gif', 'm4v', 'mkv', 'mov', 'mp4', 'mpeg', 'mpg', 'ts', 'wmv' # include video suffixes
39
- BAR_FORMAT = '{l_bar}{bar:10}{r_bar}{bar:-10b}' # tqdm bar format
40
-
41
- # Get orientation exif tag
42
- for orientation in ExifTags.TAGS.keys():
43
- if ExifTags.TAGS[orientation] == 'Orientation':
44
- break
45
-
46
-
47
- def get_hash(paths):
48
- # Returns a single hash value of a list of paths (files or dirs)
49
- size = sum(os.path.getsize(p) for p in paths if os.path.exists(p)) # sizes
50
- h = hashlib.md5(str(size).encode()) # hash sizes
51
- h.update(''.join(paths).encode()) # hash paths
52
- return h.hexdigest() # return hash
53
-
54
-
55
- def exif_size(img):
56
- # Returns exif-corrected PIL size
57
- s = img.size # (width, height)
58
- try:
59
- rotation = dict(img._getexif().items())[orientation]
60
- if rotation == 6: # rotation 270
61
- s = (s[1], s[0])
62
- elif rotation == 8: # rotation 90
63
- s = (s[1], s[0])
64
- except Exception:
65
- pass
66
-
67
- return s
68
-
69
-
70
- def exif_transpose(image):
71
- """
72
- Transpose a PIL image accordingly if it has an EXIF Orientation tag.
73
- Inplace version of https://github.com/python-pillow/Pillow/blob/master/src/PIL/ImageOps.py exif_transpose()
74
-
75
- :param image: The image to transpose.
76
- :return: An image.
77
- """
78
- exif = image.getexif()
79
- orientation = exif.get(0x0112, 1) # default 1
80
- if orientation > 1:
81
- method = {2: Image.FLIP_LEFT_RIGHT,
82
- 3: Image.ROTATE_180,
83
- 4: Image.FLIP_TOP_BOTTOM,
84
- 5: Image.TRANSPOSE,
85
- 6: Image.ROTATE_270,
86
- 7: Image.TRANSVERSE,
87
- 8: Image.ROTATE_90,
88
- }.get(orientation)
89
- if method is not None:
90
- image = image.transpose(method)
91
- del exif[0x0112]
92
- image.info["exif"] = exif.tobytes()
93
- return image
94
-
95
-
96
- def create_dataloader(path, imgsz, batch_size, stride, single_cls=False, hyp=None, augment=False, cache=False, pad=0.0,
97
- rect=False, rank=-1, workers=8, image_weights=False, quad=False, prefix='', shuffle=False):
98
- if rect and shuffle:
99
- LOGGER.warning('WARNING: --rect is incompatible with DataLoader shuffle, setting shuffle=False')
100
- shuffle = False
101
- with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP
102
- dataset = LoadImagesAndLabels(path, imgsz, batch_size,
103
- augment=augment, # augmentation
104
- hyp=hyp, # hyperparameters
105
- rect=rect, # rectangular batches
106
- cache_images=cache,
107
- single_cls=single_cls,
108
- stride=int(stride),
109
- pad=pad,
110
- image_weights=image_weights,
111
- prefix=prefix)
112
-
113
- batch_size = min(batch_size, len(dataset))
114
- nd = torch.cuda.device_count() # number of CUDA devices
115
- nw = min([os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers]) # number of workers
116
- sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle)
117
- loader = DataLoader if image_weights else InfiniteDataLoader # only DataLoader allows for attribute updates
118
- return loader(dataset,
119
- batch_size=batch_size,
120
- shuffle=shuffle and sampler is None,
121
- num_workers=nw,
122
- sampler=sampler,
123
- pin_memory=True,
124
- collate_fn=LoadImagesAndLabels.collate_fn4 if quad else LoadImagesAndLabels.collate_fn), dataset
125
-
126
-
127
- class InfiniteDataLoader(dataloader.DataLoader):
128
- """ Dataloader that reuses workers
129
-
130
- Uses same syntax as vanilla DataLoader
131
- """
132
-
133
- def __init__(self, *args, **kwargs):
134
- super().__init__(*args, **kwargs)
135
- object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler))
136
- self.iterator = super().__iter__()
137
-
138
- def __len__(self):
139
- return len(self.batch_sampler.sampler)
140
-
141
- def __iter__(self):
142
- for i in range(len(self)):
143
- yield next(self.iterator)
144
-
145
-
146
- class _RepeatSampler:
147
- """ Sampler that repeats forever
148
-
149
- Args:
150
- sampler (Sampler)
151
- """
152
-
153
- def __init__(self, sampler):
154
- self.sampler = sampler
155
-
156
- def __iter__(self):
157
- while True:
158
- yield from iter(self.sampler)
159
-
160
-
161
- class LoadImages:
162
- # YOLOv5 image/video dataloader, i.e. `python detect.py --source image.jpg/vid.mp4`
163
- def __init__(self, path, img_size=640, stride=32, auto=True):
164
- p = str(Path(path).resolve()) # os-agnostic absolute path
165
- if '*' in p:
166
- files = sorted(glob.glob(p, recursive=True)) # glob
167
- elif os.path.isdir(p):
168
- files = sorted(glob.glob(os.path.join(p, '*.*'))) # dir
169
- elif os.path.isfile(p):
170
- files = [p] # files
171
- else:
172
- raise Exception(f'ERROR: {p} does not exist')
173
-
174
- images = [x for x in files if x.split('.')[-1].lower() in IMG_FORMATS]
175
- videos = [x for x in files if x.split('.')[-1].lower() in VID_FORMATS]
176
- ni, nv = len(images), len(videos)
177
-
178
- self.img_size = img_size
179
- self.stride = stride
180
- self.files = images + videos
181
- self.nf = ni + nv # number of files
182
- self.video_flag = [False] * ni + [True] * nv
183
- self.mode = 'image'
184
- self.auto = auto
185
- if any(videos):
186
- self.new_video(videos[0]) # new video
187
- else:
188
- self.cap = None
189
- assert self.nf > 0, f'No images or videos found in {p}. ' \
190
- f'Supported formats are:\nimages: {IMG_FORMATS}\nvideos: {VID_FORMATS}'
191
-
192
- def __iter__(self):
193
- self.count = 0
194
- return self
195
-
196
- def __next__(self):
197
- if self.count == self.nf:
198
- raise StopIteration
199
- path = self.files[self.count]
200
-
201
- if self.video_flag[self.count]:
202
- # Read video
203
- self.mode = 'video'
204
- ret_val, img0 = self.cap.read()
205
- while not ret_val:
206
- self.count += 1
207
- self.cap.release()
208
- if self.count == self.nf: # last video
209
- raise StopIteration
210
- else:
211
- path = self.files[self.count]
212
- self.new_video(path)
213
- ret_val, img0 = self.cap.read()
214
-
215
- self.frame += 1
216
- s = f'video {self.count + 1}/{self.nf} ({self.frame}/{self.frames}) {path}: '
217
-
218
- else:
219
- # Read image
220
- self.count += 1
221
- img0 = cv2.imread(path) # BGR
222
- assert img0 is not None, f'Image Not Found {path}'
223
- s = f'image {self.count}/{self.nf} {path}: '
224
-
225
- # Padded resize
226
- img = letterbox(img0, self.img_size, stride=self.stride, auto=self.auto)[0]
227
-
228
- # Convert
229
- img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
230
- img = np.ascontiguousarray(img)
231
-
232
- return path, img, img0, self.cap, s
233
-
234
- def new_video(self, path):
235
- self.frame = 0
236
- self.cap = cv2.VideoCapture(path)
237
- self.frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))
238
-
239
- def __len__(self):
240
- return self.nf # number of files
241
-
242
-
243
- class LoadWebcam: # for inference
244
- # YOLOv5 local webcam dataloader, i.e. `python detect.py --source 0`
245
- def __init__(self, pipe='0', img_size=640, stride=32):
246
- self.img_size = img_size
247
- self.stride = stride
248
- self.pipe = eval(pipe) if pipe.isnumeric() else pipe
249
- self.cap = cv2.VideoCapture(self.pipe) # video capture object
250
- self.cap.set(cv2.CAP_PROP_BUFFERSIZE, 3) # set buffer size
251
-
252
- def __iter__(self):
253
- self.count = -1
254
- return self
255
-
256
- def __next__(self):
257
- self.count += 1
258
- if cv2.waitKey(1) == ord('q'): # q to quit
259
- self.cap.release()
260
- cv2.destroyAllWindows()
261
- raise StopIteration
262
-
263
- # Read frame
264
- ret_val, img0 = self.cap.read()
265
- img0 = cv2.flip(img0, 1) # flip left-right
266
-
267
- # Print
268
- assert ret_val, f'Camera Error {self.pipe}'
269
- img_path = 'webcam.jpg'
270
- s = f'webcam {self.count}: '
271
-
272
- # Padded resize
273
- img = letterbox(img0, self.img_size, stride=self.stride)[0]
274
-
275
- # Convert
276
- img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
277
- img = np.ascontiguousarray(img)
278
-
279
- return img_path, img, img0, None, s
280
-
281
- def __len__(self):
282
- return 0
283
-
284
-
285
- class LoadStreams:
286
- # YOLOv5 streamloader, i.e. `python detect.py --source 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP streams`
287
- def __init__(self, sources='streams.txt', img_size=640, stride=32, auto=True):
288
- self.mode = 'stream'
289
- self.img_size = img_size
290
- self.stride = stride
291
-
292
- if os.path.isfile(sources):
293
- with open(sources) as f:
294
- sources = [x.strip() for x in f.read().strip().splitlines() if len(x.strip())]
295
- else:
296
- sources = [sources]
297
-
298
- n = len(sources)
299
- self.imgs, self.fps, self.frames, self.threads = [None] * n, [0] * n, [0] * n, [None] * n
300
- self.sources = [clean_str(x) for x in sources] # clean source names for later
301
- self.auto = auto
302
- for i, s in enumerate(sources): # index, source
303
- # Start thread to read frames from video stream
304
- st = f'{i + 1}/{n}: {s}... '
305
- if urlparse(s).hostname in ('youtube.com', 'youtu.be'): # if source is YouTube video
306
- check_requirements(('pafy', 'youtube_dl==2020.12.2'))
307
- import pafy
308
- s = pafy.new(s).getbest(preftype="mp4").url # YouTube URL
309
- s = eval(s) if s.isnumeric() else s # i.e. s = '0' local webcam
310
- cap = cv2.VideoCapture(s)
311
- assert cap.isOpened(), f'{st}Failed to open {s}'
312
- w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
313
- h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
314
- fps = cap.get(cv2.CAP_PROP_FPS) # warning: may return 0 or nan
315
- self.frames[i] = max(int(cap.get(cv2.CAP_PROP_FRAME_COUNT)), 0) or float('inf') # infinite stream fallback
316
- self.fps[i] = max((fps if math.isfinite(fps) else 0) % 100, 0) or 30 # 30 FPS fallback
317
-
318
- _, self.imgs[i] = cap.read() # guarantee first frame
319
- self.threads[i] = Thread(target=self.update, args=([i, cap, s]), daemon=True)
320
- LOGGER.info(f"{st} Success ({self.frames[i]} frames {w}x{h} at {self.fps[i]:.2f} FPS)")
321
- self.threads[i].start()
322
- LOGGER.info('') # newline
323
-
324
- # check for common shapes
325
- s = np.stack([letterbox(x, self.img_size, stride=self.stride, auto=self.auto)[0].shape for x in self.imgs])
326
- self.rect = np.unique(s, axis=0).shape[0] == 1 # rect inference if all shapes equal
327
- if not self.rect:
328
- LOGGER.warning('WARNING: Stream shapes differ. For optimal performance supply similarly-shaped streams.')
329
-
330
- def update(self, i, cap, stream):
331
- # Read stream `i` frames in daemon thread
332
- n, f, read = 0, self.frames[i], 1 # frame number, frame array, inference every 'read' frame
333
- while cap.isOpened() and n < f:
334
- n += 1
335
- # _, self.imgs[index] = cap.read()
336
- cap.grab()
337
- if n % read == 0:
338
- success, im = cap.retrieve()
339
- if success:
340
- self.imgs[i] = im
341
- else:
342
- LOGGER.warning('WARNING: Video stream unresponsive, please check your IP camera connection.')
343
- self.imgs[i] = np.zeros_like(self.imgs[i])
344
- cap.open(stream) # re-open stream if signal was lost
345
- time.sleep(1 / self.fps[i]) # wait time
346
-
347
- def __iter__(self):
348
- self.count = -1
349
- return self
350
-
351
- def __next__(self):
352
- self.count += 1
353
- if not all(x.is_alive() for x in self.threads) or cv2.waitKey(1) == ord('q'): # q to quit
354
- cv2.destroyAllWindows()
355
- raise StopIteration
356
-
357
- # Letterbox
358
- img0 = self.imgs.copy()
359
- img = [letterbox(x, self.img_size, stride=self.stride, auto=self.rect and self.auto)[0] for x in img0]
360
-
361
- # Stack
362
- img = np.stack(img, 0)
363
-
364
- # Convert
365
- img = img[..., ::-1].transpose((0, 3, 1, 2)) # BGR to RGB, BHWC to BCHW
366
- img = np.ascontiguousarray(img)
367
-
368
- return self.sources, img, img0, None, ''
369
-
370
- def __len__(self):
371
- return len(self.sources) # 1E12 frames = 32 streams at 30 FPS for 30 years
372
-
373
-
374
- def img2label_paths(img_paths):
375
- # Define label paths as a function of image paths
376
- sa, sb = os.sep + 'images' + os.sep, os.sep + 'labels' + os.sep # /images/, /labels/ substrings
377
- return [sb.join(x.rsplit(sa, 1)).rsplit('.', 1)[0] + '.txt' for x in img_paths]
378
-
379
-
380
- class LoadImagesAndLabels(Dataset):
381
- # YOLOv5 train_loader/val_loader, loads images and labels for training and validation
382
- cache_version = 0.6 # dataset labels *.cache version
383
-
384
- def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
385
- cache_images=False, single_cls=False, stride=32, pad=0.0, prefix=''):
386
- self.img_size = img_size
387
- self.augment = augment
388
- self.hyp = hyp
389
- self.image_weights = image_weights
390
- self.rect = False if image_weights else rect
391
- self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training)
392
- self.mosaic_border = [-img_size // 2, -img_size // 2]
393
- self.stride = stride
394
- self.path = path
395
- self.albumentations = Albumentations() if augment else None
396
-
397
- try:
398
- f = [] # image files
399
- for p in path if isinstance(path, list) else [path]:
400
- p = Path(p) # os-agnostic
401
- if p.is_dir(): # dir
402
- f += glob.glob(str(p / '**' / '*.*'), recursive=True)
403
- # f = list(p.rglob('*.*')) # pathlib
404
- elif p.is_file(): # file
405
- with open(p) as t:
406
- t = t.read().strip().splitlines()
407
- parent = str(p.parent) + os.sep
408
- f += [x.replace('./', parent) if x.startswith('./') else x for x in t] # local to global path
409
- # f += [p.parent / x.lstrip(os.sep) for x in t] # local to global path (pathlib)
410
- else:
411
- raise Exception(f'{prefix}{p} does not exist')
412
- self.im_files = sorted(x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in IMG_FORMATS)
413
- # self.img_files = sorted([x for x in f if x.suffix[1:].lower() in IMG_FORMATS]) # pathlib
414
- assert self.im_files, f'{prefix}No images found'
415
- except Exception as e:
416
- raise Exception(f'{prefix}Error loading data from {path}: {e}\nSee {HELP_URL}')
417
-
418
- # Check cache
419
- self.label_files = img2label_paths(self.im_files) # labels
420
- cache_path = (p if p.is_file() else Path(self.label_files[0]).parent).with_suffix('.cache')
421
- try:
422
- cache, exists = np.load(cache_path, allow_pickle=True).item(), True # load dict
423
- assert cache['version'] == self.cache_version # same version
424
- assert cache['hash'] == get_hash(self.label_files + self.im_files) # same hash
425
- except Exception:
426
- cache, exists = self.cache_labels(cache_path, prefix), False # cache
427
-
428
- # Display cache
429
- nf, nm, ne, nc, n = cache.pop('results') # found, missing, empty, corrupt, total
430
- if exists:
431
- d = f"Scanning '{cache_path}' images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupt"
432
- tqdm(None, desc=prefix + d, total=n, initial=n, bar_format=BAR_FORMAT) # display cache results
433
- if cache['msgs']:
434
- LOGGER.info('\n'.join(cache['msgs'])) # display warnings
435
- assert nf > 0 or not augment, f'{prefix}No labels in {cache_path}. Can not train without labels. See {HELP_URL}'
436
-
437
- # Read cache
438
- [cache.pop(k) for k in ('hash', 'version', 'msgs')] # remove items
439
- labels, shapes, self.segments = zip(*cache.values())
440
- self.labels = list(labels)
441
- self.shapes = np.array(shapes, dtype=np.float64)
442
- self.im_files = list(cache.keys()) # update
443
- self.label_files = img2label_paths(cache.keys()) # update
444
- n = len(shapes) # number of images
445
- bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index
446
- nb = bi[-1] + 1 # number of batches
447
- self.batch = bi # batch index of image
448
- self.n = n
449
- self.indices = range(n)
450
-
451
- # Update labels
452
- include_class = [] # filter labels to include only these classes (optional)
453
- include_class_array = np.array(include_class).reshape(1, -1)
454
- for i, (label, segment) in enumerate(zip(self.labels, self.segments)):
455
- if include_class:
456
- j = (label[:, 0:1] == include_class_array).any(1)
457
- self.labels[i] = label[j]
458
- if segment:
459
- self.segments[i] = segment[j]
460
- if single_cls: # single-class training, merge all classes into 0
461
- self.labels[i][:, 0] = 0
462
- if segment:
463
- self.segments[i][:, 0] = 0
464
-
465
- # Rectangular Training
466
- if self.rect:
467
- # Sort by aspect ratio
468
- s = self.shapes # wh
469
- ar = s[:, 1] / s[:, 0] # aspect ratio
470
- irect = ar.argsort()
471
- self.im_files = [self.im_files[i] for i in irect]
472
- self.label_files = [self.label_files[i] for i in irect]
473
- self.labels = [self.labels[i] for i in irect]
474
- self.shapes = s[irect] # wh
475
- ar = ar[irect]
476
-
477
- # Set training image shapes
478
- shapes = [[1, 1]] * nb
479
- for i in range(nb):
480
- ari = ar[bi == i]
481
- mini, maxi = ari.min(), ari.max()
482
- if maxi < 1:
483
- shapes[i] = [maxi, 1]
484
- elif mini > 1:
485
- shapes[i] = [1, 1 / mini]
486
-
487
- self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride
488
-
489
- # Cache images into RAM/disk for faster training (WARNING: large datasets may exceed system resources)
490
- self.ims = [None] * n
491
- self.npy_files = [Path(f).with_suffix('.npy') for f in self.im_files]
492
- if cache_images:
493
- gb = 0 # Gigabytes of cached images
494
- self.im_hw0, self.im_hw = [None] * n, [None] * n
495
- fcn = self.cache_images_to_disk if cache_images == 'disk' else self.load_image
496
- results = ThreadPool(NUM_THREADS).imap(fcn, range(n))
497
- pbar = tqdm(enumerate(results), total=n, bar_format=BAR_FORMAT)
498
- for i, x in pbar:
499
- if cache_images == 'disk':
500
- gb += self.npy_files[i].stat().st_size
501
- else: # 'ram'
502
- self.ims[i], self.im_hw0[i], self.im_hw[i] = x # im, hw_orig, hw_resized = load_image(self, i)
503
- gb += self.ims[i].nbytes
504
- pbar.desc = f'{prefix}Caching images ({gb / 1E9:.1f}GB {cache_images})'
505
- pbar.close()
506
-
507
- def cache_labels(self, path=Path('./labels.cache'), prefix=''):
508
- # Cache dataset labels, check images and read shapes
509
- x = {} # dict
510
- nm, nf, ne, nc, msgs = 0, 0, 0, 0, [] # number missing, found, empty, corrupt, messages
511
- desc = f"{prefix}Scanning '{path.parent / path.stem}' images and labels..."
512
- with Pool(NUM_THREADS) as pool:
513
- pbar = tqdm(pool.imap(verify_image_label, zip(self.im_files, self.label_files, repeat(prefix))),
514
- desc=desc, total=len(self.im_files), bar_format=BAR_FORMAT)
515
- for im_file, lb, shape, segments, nm_f, nf_f, ne_f, nc_f, msg in pbar:
516
- nm += nm_f
517
- nf += nf_f
518
- ne += ne_f
519
- nc += nc_f
520
- if im_file:
521
- x[im_file] = [lb, shape, segments]
522
- if msg:
523
- msgs.append(msg)
524
- pbar.desc = f"{desc}{nf} found, {nm} missing, {ne} empty, {nc} corrupt"
525
-
526
- pbar.close()
527
- if msgs:
528
- LOGGER.info('\n'.join(msgs))
529
- if nf == 0:
530
- LOGGER.warning(f'{prefix}WARNING: No labels found in {path}. See {HELP_URL}')
531
- x['hash'] = get_hash(self.label_files + self.im_files)
532
- x['results'] = nf, nm, ne, nc, len(self.im_files)
533
- x['msgs'] = msgs # warnings
534
- x['version'] = self.cache_version # cache version
535
- try:
536
- np.save(path, x) # save cache for next time
537
- path.with_suffix('.cache.npy').rename(path) # remove .npy suffix
538
- LOGGER.info(f'{prefix}New cache created: {path}')
539
- except Exception as e:
540
- LOGGER.warning(f'{prefix}WARNING: Cache directory {path.parent} is not writeable: {e}') # not writeable
541
- return x
542
-
543
- def __len__(self):
544
- return len(self.im_files)
545
-
546
- # def __iter__(self):
547
- # self.count = -1
548
- # print('ran dataset iter')
549
- # #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
550
- # return self
551
-
552
- def __getitem__(self, index):
553
- index = self.indices[index] # linear, shuffled, or image_weights
554
-
555
- hyp = self.hyp
556
- mosaic = self.mosaic and random.random() < hyp['mosaic']
557
- if mosaic:
558
- # Load mosaic
559
- img, labels = self.load_mosaic(index)
560
- shapes = None
561
-
562
- # MixUp augmentation
563
- if random.random() < hyp['mixup']:
564
- img, labels = mixup(img, labels, *self.load_mosaic(random.randint(0, self.n - 1)))
565
-
566
- else:
567
- # Load image
568
- img, (h0, w0), (h, w) = self.load_image(index)
569
-
570
- # Letterbox
571
- shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape
572
- img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
573
- shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
574
-
575
- labels = self.labels[index].copy()
576
- if labels.size: # normalized xywh to pixel xyxy format
577
- labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1])
578
-
579
- if self.augment:
580
- img, labels = random_perspective(img, labels,
581
- degrees=hyp['degrees'],
582
- translate=hyp['translate'],
583
- scale=hyp['scale'],
584
- shear=hyp['shear'],
585
- perspective=hyp['perspective'])
586
-
587
- nl = len(labels) # number of labels
588
- if nl:
589
- labels[:, 1:5] = xyxy2xywhn(labels[:, 1:5], w=img.shape[1], h=img.shape[0], clip=True, eps=1E-3)
590
-
591
- if self.augment:
592
- # Albumentations
593
- img, labels = self.albumentations(img, labels)
594
- nl = len(labels) # update after albumentations
595
-
596
- # HSV color-space
597
- augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])
598
-
599
- # Flip up-down
600
- if random.random() < hyp['flipud']:
601
- img = np.flipud(img)
602
- if nl:
603
- labels[:, 2] = 1 - labels[:, 2]
604
-
605
- # Flip left-right
606
- if random.random() < hyp['fliplr']:
607
- img = np.fliplr(img)
608
- if nl:
609
- labels[:, 1] = 1 - labels[:, 1]
610
-
611
- # Cutouts
612
- # labels = cutout(img, labels, p=0.5)
613
- # nl = len(labels) # update after cutout
614
-
615
- labels_out = torch.zeros((nl, 6))
616
- if nl:
617
- labels_out[:, 1:] = torch.from_numpy(labels)
618
-
619
- # Convert
620
- img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
621
- img = np.ascontiguousarray(img)
622
-
623
- return torch.from_numpy(img), labels_out, self.im_files[index], shapes
624
-
625
- def load_image(self, i):
626
- # Loads 1 image from dataset index 'i', returns (im, original hw, resized hw)
627
- im, f, fn = self.ims[i], self.im_files[i], self.npy_files[i],
628
- if im is None: # not cached in RAM
629
- if fn.exists(): # load npy
630
- im = np.load(fn)
631
- else: # read image
632
- im = cv2.imread(f) # BGR
633
- assert im is not None, f'Image Not Found {f}'
634
- h0, w0 = im.shape[:2] # orig hw
635
- r = self.img_size / max(h0, w0) # ratio
636
- if r != 1: # if sizes are not equal
637
- im = cv2.resize(im,
638
- (int(w0 * r), int(h0 * r)),
639
- interpolation=cv2.INTER_LINEAR if (self.augment or r > 1) else cv2.INTER_AREA)
640
- return im, (h0, w0), im.shape[:2] # im, hw_original, hw_resized
641
- else:
642
- return self.ims[i], self.im_hw0[i], self.im_hw[i] # im, hw_original, hw_resized
643
-
644
- def cache_images_to_disk(self, i):
645
- # Saves an image as an *.npy file for faster loading
646
- f = self.npy_files[i]
647
- if not f.exists():
648
- np.save(f.as_posix(), cv2.imread(self.im_files[i]))
649
-
650
- def load_mosaic(self, index):
651
- # YOLOv5 4-mosaic loader. Loads 1 image + 3 random images into a 4-image mosaic
652
- labels4, segments4 = [], []
653
- s = self.img_size
654
- yc, xc = (int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border) # mosaic center x, y
655
- indices = [index] + random.choices(self.indices, k=3) # 3 additional image indices
656
- random.shuffle(indices)
657
- for i, index in enumerate(indices):
658
- # Load image
659
- img, _, (h, w) = self.load_image(index)
660
-
661
- # place img in img4
662
- if i == 0: # top left
663
- img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
664
- x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
665
- x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
666
- elif i == 1: # top right
667
- x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
668
- x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
669
- elif i == 2: # bottom left
670
- x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
671
- x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
672
- elif i == 3: # bottom right
673
- x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
674
- x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
675
-
676
- img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
677
- padw = x1a - x1b
678
- padh = y1a - y1b
679
-
680
- # Labels
681
- labels, segments = self.labels[index].copy(), self.segments[index].copy()
682
- if labels.size:
683
- labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh) # normalized xywh to pixel xyxy format
684
- segments = [xyn2xy(x, w, h, padw, padh) for x in segments]
685
- labels4.append(labels)
686
- segments4.extend(segments)
687
-
688
- # Concat/clip labels
689
- labels4 = np.concatenate(labels4, 0)
690
- for x in (labels4[:, 1:], *segments4):
691
- np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
692
- # img4, labels4 = replicate(img4, labels4) # replicate
693
-
694
- # Augment
695
- img4, labels4, segments4 = copy_paste(img4, labels4, segments4, p=self.hyp['copy_paste'])
696
- img4, labels4 = random_perspective(img4, labels4, segments4,
697
- degrees=self.hyp['degrees'],
698
- translate=self.hyp['translate'],
699
- scale=self.hyp['scale'],
700
- shear=self.hyp['shear'],
701
- perspective=self.hyp['perspective'],
702
- border=self.mosaic_border) # border to remove
703
-
704
- return img4, labels4
705
-
706
- def load_mosaic9(self, index):
707
- # YOLOv5 9-mosaic loader. Loads 1 image + 8 random images into a 9-image mosaic
708
- labels9, segments9 = [], []
709
- s = self.img_size
710
- indices = [index] + random.choices(self.indices, k=8) # 8 additional image indices
711
- random.shuffle(indices)
712
- hp, wp = -1, -1 # height, width previous
713
- for i, index in enumerate(indices):
714
- # Load image
715
- img, _, (h, w) = self.load_image(index)
716
-
717
- # place img in img9
718
- if i == 0: # center
719
- img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
720
- h0, w0 = h, w
721
- c = s, s, s + w, s + h # xmin, ymin, xmax, ymax (base) coordinates
722
- elif i == 1: # top
723
- c = s, s - h, s + w, s
724
- elif i == 2: # top right
725
- c = s + wp, s - h, s + wp + w, s
726
- elif i == 3: # right
727
- c = s + w0, s, s + w0 + w, s + h
728
- elif i == 4: # bottom right
729
- c = s + w0, s + hp, s + w0 + w, s + hp + h
730
- elif i == 5: # bottom
731
- c = s + w0 - w, s + h0, s + w0, s + h0 + h
732
- elif i == 6: # bottom left
733
- c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h
734
- elif i == 7: # left
735
- c = s - w, s + h0 - h, s, s + h0
736
- elif i == 8: # top left
737
- c = s - w, s + h0 - hp - h, s, s + h0 - hp
738
-
739
- padx, pady = c[:2]
740
- x1, y1, x2, y2 = (max(x, 0) for x in c) # allocate coords
741
-
742
- # Labels
743
- labels, segments = self.labels[index].copy(), self.segments[index].copy()
744
- if labels.size:
745
- labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padx, pady) # normalized xywh to pixel xyxy format
746
- segments = [xyn2xy(x, w, h, padx, pady) for x in segments]
747
- labels9.append(labels)
748
- segments9.extend(segments)
749
-
750
- # Image
751
- img9[y1:y2, x1:x2] = img[y1 - pady:, x1 - padx:] # img9[ymin:ymax, xmin:xmax]
752
- hp, wp = h, w # height, width previous
753
-
754
- # Offset
755
- yc, xc = (int(random.uniform(0, s)) for _ in self.mosaic_border) # mosaic center x, y
756
- img9 = img9[yc:yc + 2 * s, xc:xc + 2 * s]
757
-
758
- # Concat/clip labels
759
- labels9 = np.concatenate(labels9, 0)
760
- labels9[:, [1, 3]] -= xc
761
- labels9[:, [2, 4]] -= yc
762
- c = np.array([xc, yc]) # centers
763
- segments9 = [x - c for x in segments9]
764
-
765
- for x in (labels9[:, 1:], *segments9):
766
- np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
767
- # img9, labels9 = replicate(img9, labels9) # replicate
768
-
769
- # Augment
770
- img9, labels9 = random_perspective(img9, labels9, segments9,
771
- degrees=self.hyp['degrees'],
772
- translate=self.hyp['translate'],
773
- scale=self.hyp['scale'],
774
- shear=self.hyp['shear'],
775
- perspective=self.hyp['perspective'],
776
- border=self.mosaic_border) # border to remove
777
-
778
- return img9, labels9
779
-
780
- @staticmethod
781
- def collate_fn(batch):
782
- im, label, path, shapes = zip(*batch) # transposed
783
- for i, lb in enumerate(label):
784
- lb[:, 0] = i # add target image index for build_targets()
785
- return torch.stack(im, 0), torch.cat(label, 0), path, shapes
786
-
787
- @staticmethod
788
- def collate_fn4(batch):
789
- img, label, path, shapes = zip(*batch) # transposed
790
- n = len(shapes) // 4
791
- im4, label4, path4, shapes4 = [], [], path[:n], shapes[:n]
792
-
793
- ho = torch.tensor([[0.0, 0, 0, 1, 0, 0]])
794
- wo = torch.tensor([[0.0, 0, 1, 0, 0, 0]])
795
- s = torch.tensor([[1, 1, 0.5, 0.5, 0.5, 0.5]]) # scale
796
- for i in range(n): # zidane torch.zeros(16,3,720,1280) # BCHW
797
- i *= 4
798
- if random.random() < 0.5:
799
- im = F.interpolate(img[i].unsqueeze(0).float(), scale_factor=2.0, mode='bilinear', align_corners=False)[
800
- 0].type(img[i].type())
801
- lb = label[i]
802
- else:
803
- im = torch.cat((torch.cat((img[i], img[i + 1]), 1), torch.cat((img[i + 2], img[i + 3]), 1)), 2)
804
- lb = torch.cat((label[i], label[i + 1] + ho, label[i + 2] + wo, label[i + 3] + ho + wo), 0) * s
805
- im4.append(im)
806
- label4.append(lb)
807
-
808
- for i, lb in enumerate(label4):
809
- lb[:, 0] = i # add target image index for build_targets()
810
-
811
- return torch.stack(im4, 0), torch.cat(label4, 0), path4, shapes4
812
-
813
-
814
- # Ancillary functions --------------------------------------------------------------------------------------------------
815
- def create_folder(path='./new'):
816
- # Create folder
817
- if os.path.exists(path):
818
- shutil.rmtree(path) # delete output folder
819
- os.makedirs(path) # make new output folder
820
-
821
-
822
- def flatten_recursive(path=DATASETS_DIR / 'coco128'):
823
- # Flatten a recursive directory by bringing all files to top level
824
- new_path = Path(str(path) + '_flat')
825
- create_folder(new_path)
826
- for file in tqdm(glob.glob(str(Path(path)) + '/**/*.*', recursive=True)):
827
- shutil.copyfile(file, new_path / Path(file).name)
828
-
829
-
830
- def extract_boxes(path=DATASETS_DIR / 'coco128'): # from utils.datasets import *; extract_boxes()
831
- # Convert detection dataset into classification dataset, with one directory per class
832
- path = Path(path) # images dir
833
- shutil.rmtree(path / 'classifier') if (path / 'classifier').is_dir() else None # remove existing
834
- files = list(path.rglob('*.*'))
835
- n = len(files) # number of files
836
- for im_file in tqdm(files, total=n):
837
- if im_file.suffix[1:] in IMG_FORMATS:
838
- # image
839
- im = cv2.imread(str(im_file))[..., ::-1] # BGR to RGB
840
- h, w = im.shape[:2]
841
-
842
- # labels
843
- lb_file = Path(img2label_paths([str(im_file)])[0])
844
- if Path(lb_file).exists():
845
- with open(lb_file) as f:
846
- lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) # labels
847
-
848
- for j, x in enumerate(lb):
849
- c = int(x[0]) # class
850
- f = (path / 'classifier') / f'{c}' / f'{path.stem}_{im_file.stem}_{j}.jpg' # new filename
851
- if not f.parent.is_dir():
852
- f.parent.mkdir(parents=True)
853
-
854
- b = x[1:] * [w, h, w, h] # box
855
- # b[2:] = b[2:].max() # rectangle to square
856
- b[2:] = b[2:] * 1.2 + 3 # pad
857
- b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int)
858
-
859
- b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image
860
- b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
861
- assert cv2.imwrite(str(f), im[b[1]:b[3], b[0]:b[2]]), f'box failure in {f}'
862
-
863
-
864
- def autosplit(path=DATASETS_DIR / 'coco128/images', weights=(0.9, 0.1, 0.0), annotated_only=False):
865
- """ Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files
866
- Usage: from utils.datasets import *; autosplit()
867
- Arguments
868
- path: Path to images directory
869
- weights: Train, val, test weights (list, tuple)
870
- annotated_only: Only use images with an annotated txt file
871
- """
872
- path = Path(path) # images dir
873
- files = sorted(x for x in path.rglob('*.*') if x.suffix[1:].lower() in IMG_FORMATS) # image files only
874
- n = len(files) # number of files
875
- random.seed(0) # for reproducibility
876
- indices = random.choices([0, 1, 2], weights=weights, k=n) # assign each image to a split
877
-
878
- txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt'] # 3 txt files
879
- [(path.parent / x).unlink(missing_ok=True) for x in txt] # remove existing
880
-
881
- print(f'Autosplitting images from {path}' + ', using *.txt labeled images only' * annotated_only)
882
- for i, img in tqdm(zip(indices, files), total=n):
883
- if not annotated_only or Path(img2label_paths([str(img)])[0]).exists(): # check label
884
- with open(path.parent / txt[i], 'a') as f:
885
- f.write('./' + img.relative_to(path.parent).as_posix() + '\n') # add image to txt file
886
-
887
-
888
- def verify_image_label(args):
889
- # Verify one image-label pair
890
- im_file, lb_file, prefix = args
891
- nm, nf, ne, nc, msg, segments = 0, 0, 0, 0, '', [] # number (missing, found, empty, corrupt), message, segments
892
- try:
893
- # verify images
894
- im = Image.open(im_file)
895
- im.verify() # PIL verify
896
- shape = exif_size(im) # image size
897
- assert (shape[0] > 9) & (shape[1] > 9), f'image size {shape} <10 pixels'
898
- assert im.format.lower() in IMG_FORMATS, f'invalid image format {im.format}'
899
- if im.format.lower() in ('jpg', 'jpeg'):
900
- with open(im_file, 'rb') as f:
901
- f.seek(-2, 2)
902
- if f.read() != b'\xff\xd9': # corrupt JPEG
903
- ImageOps.exif_transpose(Image.open(im_file)).save(im_file, 'JPEG', subsampling=0, quality=100)
904
- msg = f'{prefix}WARNING: {im_file}: corrupt JPEG restored and saved'
905
-
906
- # verify labels
907
- if os.path.isfile(lb_file):
908
- nf = 1 # label found
909
- with open(lb_file) as f:
910
- lb = [x.split() for x in f.read().strip().splitlines() if len(x)]
911
- if any(len(x) > 6 for x in lb): # is segment
912
- classes = np.array([x[0] for x in lb], dtype=np.float32)
913
- segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in lb] # (cls, xy1...)
914
- lb = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1) # (cls, xywh)
915
- lb = np.array(lb, dtype=np.float32)
916
- nl = len(lb)
917
- if nl:
918
- assert lb.shape[1] == 5, f'labels require 5 columns, {lb.shape[1]} columns detected'
919
- assert (lb >= 0).all(), f'negative label values {lb[lb < 0]}'
920
- assert (lb[:, 1:] <= 1).all(), f'non-normalized or out of bounds coordinates {lb[:, 1:][lb[:, 1:] > 1]}'
921
- _, i = np.unique(lb, axis=0, return_index=True)
922
- if len(i) < nl: # duplicate row check
923
- lb = lb[i] # remove duplicates
924
- if segments:
925
- segments = segments[i]
926
- msg = f'{prefix}WARNING: {im_file}: {nl - len(i)} duplicate labels removed'
927
- else:
928
- ne = 1 # label empty
929
- lb = np.zeros((0, 5), dtype=np.float32)
930
- else:
931
- nm = 1 # label missing
932
- lb = np.zeros((0, 5), dtype=np.float32)
933
- return im_file, lb, shape, segments, nm, nf, ne, nc, msg
934
- except Exception as e:
935
- nc = 1
936
- msg = f'{prefix}WARNING: {im_file}: ignoring corrupt image/label: {e}'
937
- return [None, None, None, None, nm, nf, ne, nc, msg]
938
-
939
-
940
- def dataset_stats(path='coco128.yaml', autodownload=False, verbose=False, profile=False, hub=False):
941
- """ Return dataset statistics dictionary with images and instances counts per split per class
942
- To run in parent directory: export PYTHONPATH="$PWD/yolov5"
943
- Usage1: from utils.datasets import *; dataset_stats('coco128.yaml', autodownload=True)
944
- Usage2: from utils.datasets import *; dataset_stats('path/to/coco128_with_yaml.zip')
945
- Arguments
946
- path: Path to data.yaml or data.zip (with data.yaml inside data.zip)
947
- autodownload: Attempt to download dataset if not found locally
948
- verbose: Print stats dictionary
949
- """
950
-
951
- def round_labels(labels):
952
- # Update labels to integer class and 6 decimal place floats
953
- return [[int(c), *(round(x, 4) for x in points)] for c, *points in labels]
954
-
955
- def unzip(path):
956
- # Unzip data.zip TODO: CONSTRAINT: path/to/abc.zip MUST unzip to 'path/to/abc/'
957
- if str(path).endswith('.zip'): # path is data.zip
958
- assert Path(path).is_file(), f'Error unzipping {path}, file not found'
959
- ZipFile(path).extractall(path=path.parent) # unzip
960
- dir = path.with_suffix('') # dataset directory == zip name
961
- return True, str(dir), next(dir.rglob('*.yaml')) # zipped, data_dir, yaml_path
962
- else: # path is data.yaml
963
- return False, None, path
964
-
965
- def hub_ops(f, max_dim=1920):
966
- # HUB ops for 1 image 'f': resize and save at reduced quality in /dataset-hub for web/app viewing
967
- f_new = im_dir / Path(f).name # dataset-hub image filename
968
- try: # use PIL
969
- im = Image.open(f)
970
- r = max_dim / max(im.height, im.width) # ratio
971
- if r < 1.0: # image too large
972
- im = im.resize((int(im.width * r), int(im.height * r)))
973
- im.save(f_new, 'JPEG', quality=75, optimize=True) # save
974
- except Exception as e: # use OpenCV
975
- print(f'WARNING: HUB ops PIL failure {f}: {e}')
976
- im = cv2.imread(f)
977
- im_height, im_width = im.shape[:2]
978
- r = max_dim / max(im_height, im_width) # ratio
979
- if r < 1.0: # image too large
980
- im = cv2.resize(im, (int(im_width * r), int(im_height * r)), interpolation=cv2.INTER_AREA)
981
- cv2.imwrite(str(f_new), im)
982
-
983
- zipped, data_dir, yaml_path = unzip(Path(path))
984
- with open(check_yaml(yaml_path), errors='ignore') as f:
985
- data = yaml.safe_load(f) # data dict
986
- if zipped:
987
- data['path'] = data_dir # TODO: should this be dir.resolve()?
988
- check_dataset(data, autodownload) # download dataset if missing
989
- hub_dir = Path(data['path'] + ('-hub' if hub else ''))
990
- stats = {'nc': data['nc'], 'names': data['names']} # statistics dictionary
991
- for split in 'train', 'val', 'test':
992
- if data.get(split) is None:
993
- stats[split] = None # i.e. no test set
994
- continue
995
- x = []
996
- dataset = LoadImagesAndLabels(data[split]) # load dataset
997
- for label in tqdm(dataset.labels, total=dataset.n, desc='Statistics'):
998
- x.append(np.bincount(label[:, 0].astype(int), minlength=data['nc']))
999
- x = np.array(x) # shape(128x80)
1000
- stats[split] = {'instance_stats': {'total': int(x.sum()), 'per_class': x.sum(0).tolist()},
1001
- 'image_stats': {'total': dataset.n, 'unlabelled': int(np.all(x == 0, 1).sum()),
1002
- 'per_class': (x > 0).sum(0).tolist()},
1003
- 'labels': [{str(Path(k).name): round_labels(v.tolist())} for k, v in
1004
- zip(dataset.im_files, dataset.labels)]}
1005
-
1006
- if hub:
1007
- im_dir = hub_dir / 'images'
1008
- im_dir.mkdir(parents=True, exist_ok=True)
1009
- for _ in tqdm(ThreadPool(NUM_THREADS).imap(hub_ops, dataset.im_files), total=dataset.n, desc='HUB Ops'):
1010
- pass
1011
-
1012
- # Profile
1013
- stats_path = hub_dir / 'stats.json'
1014
- if profile:
1015
- for _ in range(1):
1016
- file = stats_path.with_suffix('.npy')
1017
- t1 = time.time()
1018
- np.save(file, stats)
1019
- t2 = time.time()
1020
- x = np.load(file, allow_pickle=True)
1021
- print(f'stats.npy times: {time.time() - t2:.3f}s read, {t2 - t1:.3f}s write')
1022
-
1023
- file = stats_path.with_suffix('.json')
1024
- t1 = time.time()
1025
- with open(file, 'w') as f:
1026
- json.dump(stats, f) # save stats *.json
1027
- t2 = time.time()
1028
- with open(file) as f:
1029
- x = json.load(f) # load hyps dict
1030
- print(f'stats.json times: {time.time() - t2:.3f}s read, {t2 - t1:.3f}s write')
1031
-
1032
- # Save, print and return
1033
- if hub:
1034
- print(f'Saving {stats_path.resolve()}...')
1035
- with open(stats_path, 'w') as f:
1036
- json.dump(stats, f) # save stats.json
1037
- if verbose:
1038
- print(json.dumps(stats, indent=2, sort_keys=False))
1039
- return stats
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ultralytics/yolov5/utils/downloads.py DELETED
@@ -1,153 +0,0 @@
1
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
- """
3
- Download utils
4
- """
5
-
6
- import os
7
- import platform
8
- import subprocess
9
- import time
10
- import urllib
11
- from pathlib import Path
12
- from zipfile import ZipFile
13
-
14
- import requests
15
- import torch
16
-
17
-
18
- def gsutil_getsize(url=''):
19
- # gs://bucket/file size https://cloud.google.com/storage/docs/gsutil/commands/du
20
- s = subprocess.check_output(f'gsutil du {url}', shell=True).decode('utf-8')
21
- return eval(s.split(' ')[0]) if len(s) else 0 # bytes
22
-
23
-
24
- def safe_download(file, url, url2=None, min_bytes=1E0, error_msg=''):
25
- # Attempts to download file from url or url2, checks and removes incomplete downloads < min_bytes
26
- file = Path(file)
27
- assert_msg = f"Downloaded file '{file}' does not exist or size is < min_bytes={min_bytes}"
28
- try: # url1
29
- print(f'Downloading {url} to {file}...')
30
- torch.hub.download_url_to_file(url, str(file))
31
- assert file.exists() and file.stat().st_size > min_bytes, assert_msg # check
32
- except Exception as e: # url2
33
- file.unlink(missing_ok=True) # remove partial downloads
34
- print(f'ERROR: {e}\nRe-attempting {url2 or url} to {file}...')
35
- os.system(f"curl -L '{url2 or url}' -o '{file}' --retry 3 -C -") # curl download, retry and resume on fail
36
- finally:
37
- if not file.exists() or file.stat().st_size < min_bytes: # check
38
- file.unlink(missing_ok=True) # remove partial downloads
39
- print(f"ERROR: {assert_msg}\n{error_msg}")
40
- print('')
41
-
42
-
43
- def attempt_download(file, repo='ultralytics/yolov5'): # from utils.downloads import *; attempt_download()
44
- # Attempt file download if does not exist
45
- file = Path(str(file).strip().replace("'", ''))
46
-
47
- if not file.exists():
48
- # URL specified
49
- name = Path(urllib.parse.unquote(str(file))).name # decode '%2F' to '/' etc.
50
- if str(file).startswith(('http:/', 'https:/')): # download
51
- url = str(file).replace(':/', '://') # Pathlib turns :// -> :/
52
- file = name.split('?')[0] # parse authentication https://url.com/file.txt?auth...
53
- if Path(file).is_file():
54
- print(f'Found {url} locally at {file}') # file already exists
55
- else:
56
- safe_download(file=file, url=url, min_bytes=1E5)
57
- return file
58
-
59
- # GitHub assets
60
- file.parent.mkdir(parents=True, exist_ok=True) # make parent dir (if required)
61
- try:
62
- response = requests.get(f'https://api.github.com/repos/{repo}/releases/latest').json() # github api
63
- assets = [x['name'] for x in response['assets']] # release assets, i.e. ['yolov5s.pt', 'yolov5m.pt', ...]
64
- tag = response['tag_name'] # i.e. 'v1.0'
65
- except Exception: # fallback plan
66
- assets = ['yolov5n.pt', 'yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt',
67
- 'yolov5n6.pt', 'yolov5s6.pt', 'yolov5m6.pt', 'yolov5l6.pt', 'yolov5x6.pt']
68
- try:
69
- tag = subprocess.check_output('git tag', shell=True, stderr=subprocess.STDOUT).decode().split()[-1]
70
- except Exception:
71
- tag = 'v6.0' # current release
72
-
73
- if name in assets:
74
- safe_download(file,
75
- url=f'https://github.com/{repo}/releases/download/{tag}/{name}',
76
- # url2=f'https://storage.googleapis.com/{repo}/ckpt/{name}', # backup url (optional)
77
- min_bytes=1E5,
78
- error_msg=f'{file} missing, try downloading from https://github.com/{repo}/releases/')
79
-
80
- return str(file)
81
-
82
-
83
- def gdrive_download(id='16TiPfZj7htmTyhntwcZyEEAejOUxuT6m', file='tmp.zip'):
84
- # Downloads a file from Google Drive. from yolov5.utils.downloads import *; gdrive_download()
85
- t = time.time()
86
- file = Path(file)
87
- cookie = Path('cookie') # gdrive cookie
88
- print(f'Downloading https://drive.google.com/uc?export=download&id={id} as {file}... ', end='')
89
- file.unlink(missing_ok=True) # remove existing file
90
- cookie.unlink(missing_ok=True) # remove existing cookie
91
-
92
- # Attempt file download
93
- out = "NUL" if platform.system() == "Windows" else "/dev/null"
94
- os.system(f'curl -c ./cookie -s -L "drive.google.com/uc?export=download&id={id}" > {out}')
95
- if os.path.exists('cookie'): # large file
96
- s = f'curl -Lb ./cookie "drive.google.com/uc?export=download&confirm={get_token()}&id={id}" -o {file}'
97
- else: # small file
98
- s = f'curl -s -L -o {file} "drive.google.com/uc?export=download&id={id}"'
99
- r = os.system(s) # execute, capture return
100
- cookie.unlink(missing_ok=True) # remove existing cookie
101
-
102
- # Error check
103
- if r != 0:
104
- file.unlink(missing_ok=True) # remove partial
105
- print('Download error ') # raise Exception('Download error')
106
- return r
107
-
108
- # Unzip if archive
109
- if file.suffix == '.zip':
110
- print('unzipping... ', end='')
111
- ZipFile(file).extractall(path=file.parent) # unzip
112
- file.unlink() # remove zip
113
-
114
- print(f'Done ({time.time() - t:.1f}s)')
115
- return r
116
-
117
-
118
- def get_token(cookie="./cookie"):
119
- with open(cookie) as f:
120
- for line in f:
121
- if "download" in line:
122
- return line.split()[-1]
123
- return ""
124
-
125
- # Google utils: https://cloud.google.com/storage/docs/reference/libraries ----------------------------------------------
126
- #
127
- #
128
- # def upload_blob(bucket_name, source_file_name, destination_blob_name):
129
- # # Uploads a file to a bucket
130
- # # https://cloud.google.com/storage/docs/uploading-objects#storage-upload-object-python
131
- #
132
- # storage_client = storage.Client()
133
- # bucket = storage_client.get_bucket(bucket_name)
134
- # blob = bucket.blob(destination_blob_name)
135
- #
136
- # blob.upload_from_filename(source_file_name)
137
- #
138
- # print('File {} uploaded to {}.'.format(
139
- # source_file_name,
140
- # destination_blob_name))
141
- #
142
- #
143
- # def download_blob(bucket_name, source_blob_name, destination_file_name):
144
- # # Uploads a blob from a bucket
145
- # storage_client = storage.Client()
146
- # bucket = storage_client.get_bucket(bucket_name)
147
- # blob = bucket.blob(source_blob_name)
148
- #
149
- # blob.download_to_filename(destination_file_name)
150
- #
151
- # print('Blob {} downloaded to {}.'.format(
152
- # source_blob_name,
153
- # destination_file_name))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ultralytics/yolov5/utils/flask_rest_api/README.md DELETED
@@ -1,73 +0,0 @@
1
- # Flask REST API
2
-
3
- [REST](https://en.wikipedia.org/wiki/Representational_state_transfer) [API](https://en.wikipedia.org/wiki/API)s are
4
- commonly used to expose Machine Learning (ML) models to other services. This folder contains an example REST API
5
- created using Flask to expose the YOLOv5s model from [PyTorch Hub](https://pytorch.org/hub/ultralytics_yolov5/).
6
-
7
- ## Requirements
8
-
9
- [Flask](https://palletsprojects.com/p/flask/) is required. Install with:
10
-
11
- ```shell
12
- $ pip install Flask
13
- ```
14
-
15
- ## Run
16
-
17
- After Flask installation run:
18
-
19
- ```shell
20
- $ python3 restapi.py --port 5000
21
- ```
22
-
23
- Then use [curl](https://curl.se/) to perform a request:
24
-
25
- ```shell
26
- $ curl -X POST -F [email protected] 'http://localhost:5000/v1/object-detection/yolov5s'
27
- ```
28
-
29
- The model inference results are returned as a JSON response:
30
-
31
- ```json
32
- [
33
- {
34
- "class": 0,
35
- "confidence": 0.8900438547,
36
- "height": 0.9318675399,
37
- "name": "person",
38
- "width": 0.3264600933,
39
- "xcenter": 0.7438579798,
40
- "ycenter": 0.5207948685
41
- },
42
- {
43
- "class": 0,
44
- "confidence": 0.8440024257,
45
- "height": 0.7155083418,
46
- "name": "person",
47
- "width": 0.6546785235,
48
- "xcenter": 0.427829951,
49
- "ycenter": 0.6334488392
50
- },
51
- {
52
- "class": 27,
53
- "confidence": 0.3771208823,
54
- "height": 0.3902671337,
55
- "name": "tie",
56
- "width": 0.0696444362,
57
- "xcenter": 0.3675483763,
58
- "ycenter": 0.7991207838
59
- },
60
- {
61
- "class": 27,
62
- "confidence": 0.3527112305,
63
- "height": 0.1540903747,
64
- "name": "tie",
65
- "width": 0.0336618312,
66
- "xcenter": 0.7814827561,
67
- "ycenter": 0.5065554976
68
- }
69
- ]
70
- ```
71
-
72
- An example python script to perform inference using [requests](https://docs.python-requests.org/en/master/) is given
73
- in `example_request.py`