3v324v23 commited on
Commit
4d48b95
1 Parent(s): d5b2b3a

feat: add json output

Browse files
Files changed (2) hide show
  1. .gitignore +2 -1
  2. app.py +13 -2
.gitignore CHANGED
@@ -2,4 +2,5 @@
2
  yolov5s.pt
3
  # __pycache__
4
  *.jpg
5
- gradio_queue.db
 
 
2
  yolov5s.pt
3
  # __pycache__
4
  *.jpg
5
+ gradio_queue.db
6
+ __pycache__
app.py CHANGED
@@ -1,6 +1,7 @@
1
  import gradio as gr
2
  import torch
3
  from PIL import Image
 
4
 
5
  # Images
6
  torch.hub.download_url_to_file(
@@ -22,11 +23,21 @@ def yolo(im, size=1024):
22
 
23
  results = model(im) # inference
24
  results.render() # updates results.imgs with boxes and labels
25
- return Image.fromarray(results.imgs[0])
 
 
 
 
 
 
 
26
 
27
 
28
  inputs = gr.inputs.Image(type='pil', label="Original Image")
29
- outputs = gr.outputs.Image(type="pil", label="Output Image")
 
 
 
30
 
31
  title = "YOLOv5 NDL-DocL Datasets"
32
  description = "YOLOv5 NDL-DocL Datasets Gradio demo for object detection. Upload an image or click an example image to use."
 
1
  import gradio as gr
2
  import torch
3
  from PIL import Image
4
+ import json
5
 
6
  # Images
7
  torch.hub.download_url_to_file(
 
23
 
24
  results = model(im) # inference
25
  results.render() # updates results.imgs with boxes and labels
26
+
27
+ df = results.pandas().xyxy[0].to_json(orient="records")
28
+ res = json.loads(df)
29
+
30
+ return [
31
+ Image.fromarray(results.imgs[0]),
32
+ res
33
+ ]
34
 
35
 
36
  inputs = gr.inputs.Image(type='pil', label="Original Image")
37
+ outputs = [
38
+ gr.outputs.Image(type="pil", label="Output Image"),
39
+ gr.outputs.JSON(label="Output JSON")
40
+ ]
41
 
42
  title = "YOLOv5 NDL-DocL Datasets"
43
  description = "YOLOv5 NDL-DocL Datasets Gradio demo for object detection. Upload an image or click an example image to use."