Spaces:
Sleeping
Sleeping
File size: 4,900 Bytes
4f3daba 86de97d 4f3daba 86de97d 3a798e9 86de97d 3a798e9 86de97d 3a798e9 86de97d b5cd9e9 3a798e9 b5cd9e9 3a798e9 b5cd9e9 3a798e9 b5cd9e9 3a798e9 b5cd9e9 86de97d 3a798e9 86de97d 3a798e9 4f3daba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
import gradio as gr
from openai import AzureOpenAI
import os
from dotenv import load_dotenv
import time
def load_environment():
"""Load environment variables."""
load_dotenv(override=True)
def initialize_openai_client():
"""Initialize the Azure OpenAI client."""
return AzureOpenAI(
azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
api_version="2024-10-01-preview"
)
def create_assistant(client, vector_store_id):
"""Create an assistant with specified configuration."""
return client.beta.assistants.create(
model="gpt-4o",
instructions="ๆ็คบใใชใ้ใใๆฅๆฌ่ชใงๅ็ญใใฆใใ ใใใ",
tools=[{
"type": "file_search",
"file_search": {"ranking_options": {"ranker": "default_2024_08_21", "score_threshold": 0}}
}],
tool_resources={"file_search": {"vector_store_ids": [vector_store_id]}},
temperature=0
)
def create_thread():
"""Create a new thread."""
return client.beta.threads.create()
def clear_thread(state):
"""ใปใใทใงใณใใชใปใใใใใใฃใใๅฑฅๆญดใใฏใชใขใใใ"""
state = initialize_session() # ๆฐใใในใฌใใใ็ๆ
return [], ""
def get_annotations(msg):
annotations = msg.content[0].text.annotations
file_ids = []
if annotations:
for annotation in annotations:
file_id = annotation.file_citation.file_id
if file_id in file_ids:
continue
print("file_id", file_id)
cited_file = client.files.retrieve(file_id)
print("filename", cited_file.filename)
try:
content = client.files.content(file_id)
except Exception as e:
print(e)
pass
file_ids.append(file_id)
return file_ids
def get_chatbot_response(client, thread_id, assistant_id, message):
"""Get chatbot response for a given message."""
client.beta.threads.messages.create(
thread_id=thread_id,
role="user",
content=message # Ensure the content is an object with a `text` key
)
run = client.beta.threads.runs.create(
thread_id=thread_id,
assistant_id=assistant_id
)
while run.status in ["queued", "in_progress", "cancelling"]:
time.sleep(1)
run = client.beta.threads.runs.retrieve(
thread_id=thread_id,
run_id=run.id
)
if run.status == "completed":
messages = client.beta.threads.messages.list(thread_id=thread_id)
for msg in messages:
# file_ids = get_annotations(msg)
main_text = msg.content[0].text.value
# main_text += "\n> aaa"
return main_text
elif run.status == "requires_action":
# Handle cases where the assistant requires further action
pass
return "Unable to retrieve a response." # Fallback response
def chatbot_response(history, message):
"""Wrapper function to generate chatbot response."""
global thread
# Get response from the API
assistant_response = get_chatbot_response(client, thread.id, assistant.id, message)
# Update chat history
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": assistant_response})
return history, ""
# Load environment variables
load_environment()
client = initialize_openai_client()
vector_store_id = os.getenv("AZURE_OPENAI_VECTOR_STORE_ID")
assistant = create_assistant(client, vector_store_id)
def respond(message, chat_history, state):
"""ใใฃใใๅฑฅๆญดใจ็ถๆ
ใๆดๆฐใใใ"""
thread_id = state["thread_id"]
bot_message = get_chatbot_response(client, thread_id, assistant.id, message)
chat_history.append({"role": "user", "content": message})
chat_history.append({"role": "assistant", "content": bot_message})
return "", chat_history
def initialize_session():
"""ใปใใทใงใณใใจใซ็ฌ็ซใใในใฌใใใๅๆๅใใใ"""
thread = create_thread()
return {"thread_id": thread.id}
with gr.Blocks() as demo:
gr.Markdown("""
# Azure OpenAI Assistants API x Gradio x Zenn
This is a Gradio demo of Retrieval-Augmented Generation (RAG) using the Azure OpenAI Assistants API, applied to [Zenn articles](https://zenn.dev/nakamura196).
""")
chatbot = gr.Chatbot(type="messages")
msg = gr.Textbox(placeholder="ใใใซใกใใปใผใธใๅ
ฅๅใใฆใใ ใใ...")
state = gr.State(initialize_session) # ใปใใทใงใณใใจใฎ็ถๆ
ใๅๆๅ
clear = gr.Button("Clear")
msg.submit(respond, [msg, chatbot, state], [msg, chatbot])
clear.click(clear_thread, inputs=[state], outputs=[chatbot, msg])
if __name__ == "__main__":
demo.launch()
|