Spaces:
Runtime error
Runtime error
File size: 15,128 Bytes
9d749c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 |
# based on https://github.com/huggingface/diffusers/blob/main/examples/train_unconditional.py
import argparse
import os
import torch
import torch.nn.functional as F
from accelerate import Accelerator
from accelerate.logging import get_logger
from datasets import load_from_disk, load_dataset
from diffusers import (DiffusionPipeline, DDPMScheduler, UNet2DModel,
DDIMScheduler, AutoencoderKL)
from diffusers.hub_utils import init_git_repo, push_to_hub
from diffusers.optimization import get_scheduler
from diffusers.training_utils import EMAModel
from torchvision.transforms import (
Compose,
Normalize,
ToTensor,
)
import numpy as np
from tqdm.auto import tqdm
from librosa.util import normalize
from audiodiffusion.mel import Mel
from audiodiffusion import LatentAudioDiffusionPipeline, AudioDiffusionPipeline
logger = get_logger(__name__)
def main(args):
output_dir = os.environ.get("SM_MODEL_DIR", None) or args.output_dir
logging_dir = os.path.join(output_dir, args.logging_dir)
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with="tensorboard",
logging_dir=logging_dir,
)
if args.dataset_name is not None:
if os.path.exists(args.dataset_name):
dataset = load_from_disk(args.dataset_name,
args.dataset_config_name)["train"]
else:
dataset = load_dataset(
args.dataset_name,
args.dataset_config_name,
cache_dir=args.cache_dir,
use_auth_token=True if args.use_auth_token else None,
split="train",
)
else:
dataset = load_dataset(
"imagefolder",
data_dir=args.train_data_dir,
cache_dir=args.cache_dir,
split="train",
)
# Determine image resolution
resolution = dataset[0]['image'].height, dataset[0]['image'].width
augmentations = Compose([
ToTensor(),
Normalize([0.5], [0.5]),
])
def transforms(examples):
if args.vae is not None and vqvae.config['in_channels'] == 3:
images = [
augmentations(image.convert('RGB'))
for image in examples["image"]
]
else:
images = [augmentations(image) for image in examples["image"]]
return {"input": images}
dataset.set_transform(transforms)
train_dataloader = torch.utils.data.DataLoader(
dataset, batch_size=args.train_batch_size, shuffle=True)
vqvae = None
if args.vae is not None:
try:
vqvae = AutoencoderKL.from_pretrained(args.vae)
except EnvironmentError:
vqvae = LatentAudioDiffusionPipeline.from_pretrained(
args.vae).vqvae
# Determine latent resolution
with torch.no_grad():
latent_resolution = vqvae.encode(
torch.zeros((1, 1) +
resolution)).latent_dist.sample().shape[2:]
if args.from_pretrained is not None:
pipeline = {
'LatentAudioDiffusionPipeline': LatentAudioDiffusionPipeline,
'AudioDiffusionPipeline': AudioDiffusionPipeline
}.get(
DiffusionPipeline.get_config_dict(
args.from_pretrained)['_class_name'], AudioDiffusionPipeline)
pipeline = pipeline.from_pretrained(args.from_pretrained)
model = pipeline.unet
if hasattr(pipeline, 'vqvae'):
vqvae = pipeline.vqvae
else:
model = UNet2DModel(
sample_size=resolution if vqvae is None else latent_resolution,
in_channels=1
if vqvae is None else vqvae.config['latent_channels'],
out_channels=1
if vqvae is None else vqvae.config['latent_channels'],
layers_per_block=2,
block_out_channels=(128, 128, 256, 256, 512, 512),
down_block_types=(
"DownBlock2D",
"DownBlock2D",
"DownBlock2D",
"DownBlock2D",
"AttnDownBlock2D",
"DownBlock2D",
),
up_block_types=(
"UpBlock2D",
"AttnUpBlock2D",
"UpBlock2D",
"UpBlock2D",
"UpBlock2D",
"UpBlock2D",
),
)
if args.scheduler == "ddpm":
noise_scheduler = DDPMScheduler(
num_train_timesteps=args.num_train_steps)
else:
noise_scheduler = DDIMScheduler(
num_train_timesteps=args.num_train_steps)
optimizer = torch.optim.AdamW(
model.parameters(),
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps,
num_training_steps=(len(train_dataloader) * args.num_epochs) //
args.gradient_accumulation_steps,
)
model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, lr_scheduler)
ema_model = EMAModel(
getattr(model, "module", model),
inv_gamma=args.ema_inv_gamma,
power=args.ema_power,
max_value=args.ema_max_decay,
)
if args.push_to_hub:
repo = init_git_repo(args, at_init=True)
if accelerator.is_main_process:
run = os.path.split(__file__)[-1].split(".")[0]
accelerator.init_trackers(run)
mel = Mel(x_res=resolution[1],
y_res=resolution[0],
hop_length=args.hop_length)
global_step = 0
for epoch in range(args.num_epochs):
progress_bar = tqdm(total=len(train_dataloader),
disable=not accelerator.is_local_main_process)
progress_bar.set_description(f"Epoch {epoch}")
if epoch < args.start_epoch:
for step in range(len(train_dataloader)):
optimizer.step()
lr_scheduler.step()
progress_bar.update(1)
global_step += 1
if epoch == args.start_epoch - 1 and args.use_ema:
ema_model.optimization_step = global_step
continue
model.train()
for step, batch in enumerate(train_dataloader):
clean_images = batch["input"]
if vqvae is not None:
vqvae.to(clean_images.device)
with torch.no_grad():
clean_images = vqvae.encode(
clean_images).latent_dist.sample()
# Scale latent images to ensure approximately unit variance
clean_images = clean_images * 0.18215
# Sample noise that we'll add to the images
noise = torch.randn(clean_images.shape).to(clean_images.device)
bsz = clean_images.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(
0,
noise_scheduler.num_train_timesteps,
(bsz, ),
device=clean_images.device,
).long()
# Add noise to the clean images according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_images = noise_scheduler.add_noise(clean_images, noise,
timesteps)
with accelerator.accumulate(model):
# Predict the noise residual
noise_pred = model(noisy_images, timesteps)["sample"]
loss = F.mse_loss(noise_pred, noise)
accelerator.backward(loss)
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
lr_scheduler.step()
if args.use_ema:
ema_model.step(model)
optimizer.zero_grad()
progress_bar.update(1)
global_step += 1
logs = {
"loss": loss.detach().item(),
"lr": lr_scheduler.get_last_lr()[0],
"step": global_step,
}
if args.use_ema:
logs["ema_decay"] = ema_model.decay
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_step)
progress_bar.close()
accelerator.wait_for_everyone()
# Generate sample images for visual inspection
if accelerator.is_main_process:
if (
epoch + 1
) % args.save_model_epochs == 0 or epoch == args.num_epochs - 1:
if vqvae is not None:
pipeline = LatentAudioDiffusionPipeline(
unet=accelerator.unwrap_model(
ema_model.averaged_model if args.use_ema else model
),
vqvae=vqvae,
scheduler=noise_scheduler)
else:
pipeline = AudioDiffusionPipeline(
unet=accelerator.unwrap_model(
ema_model.averaged_model if args.use_ema else model
),
scheduler=noise_scheduler,
)
# save the model
if args.push_to_hub:
try:
push_to_hub(
args,
pipeline,
repo,
commit_message=f"Epoch {epoch}",
blocking=False,
)
except NameError: # current version of diffusers has a little bug
pass
else:
pipeline.save_pretrained(output_dir)
if (epoch + 1) % args.save_images_epochs == 0:
generator = torch.manual_seed(42)
# run pipeline in inference (sample random noise and denoise)
images, (sample_rate, audios) = pipeline(
mel=mel,
generator=generator,
batch_size=args.eval_batch_size,
)
# denormalize the images and save to tensorboard
images = np.array([
np.frombuffer(image.tobytes(), dtype="uint8").reshape(
(len(image.getbands()), image.height, image.width))
for image in images
])
accelerator.trackers[0].writer.add_images(
"test_samples", images, epoch)
for _, audio in enumerate(audios):
accelerator.trackers[0].writer.add_audio(
f"test_audio_{_}",
normalize(audio),
epoch,
sample_rate=sample_rate,
)
accelerator.wait_for_everyone()
accelerator.end_training()
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Simple example of a training script.")
parser.add_argument("--local_rank", type=int, default=-1)
parser.add_argument("--dataset_name", type=str, default=None)
parser.add_argument("--dataset_config_name", type=str, default=None)
parser.add_argument(
"--train_data_dir",
type=str,
default=None,
help="A folder containing the training data.",
)
parser.add_argument("--output_dir", type=str, default="ddpm-model-64")
parser.add_argument("--overwrite_output_dir", type=bool, default=False)
parser.add_argument("--cache_dir", type=str, default=None)
parser.add_argument("--train_batch_size", type=int, default=16)
parser.add_argument("--eval_batch_size", type=int, default=16)
parser.add_argument("--num_epochs", type=int, default=100)
parser.add_argument("--save_images_epochs", type=int, default=10)
parser.add_argument("--save_model_epochs", type=int, default=10)
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
parser.add_argument("--learning_rate", type=float, default=1e-4)
parser.add_argument("--lr_scheduler", type=str, default="cosine")
parser.add_argument("--lr_warmup_steps", type=int, default=500)
parser.add_argument("--adam_beta1", type=float, default=0.95)
parser.add_argument("--adam_beta2", type=float, default=0.999)
parser.add_argument("--adam_weight_decay", type=float, default=1e-6)
parser.add_argument("--adam_epsilon", type=float, default=1e-08)
parser.add_argument("--use_ema", type=bool, default=True)
parser.add_argument("--ema_inv_gamma", type=float, default=1.0)
parser.add_argument("--ema_power", type=float, default=3 / 4)
parser.add_argument("--ema_max_decay", type=float, default=0.9999)
parser.add_argument("--push_to_hub", type=bool, default=False)
parser.add_argument("--use_auth_token", type=bool, default=False)
parser.add_argument("--hub_token", type=str, default=None)
parser.add_argument("--hub_model_id", type=str, default=None)
parser.add_argument("--hub_private_repo", type=bool, default=False)
parser.add_argument("--logging_dir", type=str, default="logs")
parser.add_argument(
"--mixed_precision",
type=str,
default="no",
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU."),
)
parser.add_argument("--hop_length", type=int, default=512)
parser.add_argument("--from_pretrained", type=str, default=None)
parser.add_argument("--start_epoch", type=int, default=0)
parser.add_argument("--num_train_steps", type=int, default=1000)
parser.add_argument("--scheduler",
type=str,
default="ddpm",
help="ddpm or ddim")
parser.add_argument("--vae",
type=str,
default=None,
help="pretrained VAE model for latent diffusion")
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
if args.dataset_name is None and args.train_data_dir is None:
raise ValueError(
"You must specify either a dataset name from the hub or a train data directory."
)
if args.dataset_name is not None and args.dataset_name == args.hub_model_id:
raise ValueError(
"The local dataset name must be different from the hub model id.")
main(args)
|