nakas's picture
audio_diffusion_fork
9d749c2
raw
history blame
3.83 kB
import os
import re
import io
import logging
import argparse
import numpy as np
import pandas as pd
from tqdm.auto import tqdm
from datasets import Dataset, DatasetDict, Features, Image, Value
from audiodiffusion.mel import Mel
logging.basicConfig(level=logging.WARN)
logger = logging.getLogger('audio_to_images')
def main(args):
mel = Mel(x_res=args.resolution[0],
y_res=args.resolution[1],
hop_length=args.hop_length,
sample_rate=args.sample_rate)
os.makedirs(args.output_dir, exist_ok=True)
audio_files = [
os.path.join(root, file) for root, _, files in os.walk(args.input_dir)
for file in files if re.search("\.(mp3|wav|m4a)$", file, re.IGNORECASE)
]
examples = []
try:
for audio_file in tqdm(audio_files):
try:
mel.load_audio(audio_file)
except KeyboardInterrupt:
raise
except:
continue
for slice in range(mel.get_number_of_slices()):
image = mel.audio_slice_to_image(slice)
assert (image.width == args.resolution[0] and image.height
== args.resolution[1]), "Wrong resolution"
# skip completely silent slices
if all(np.frombuffer(image.tobytes(), dtype=np.uint8) == 255):
logger.warn('File %s slice %d is completely silent',
audio_file, slice)
continue
with io.BytesIO() as output:
image.save(output, format="PNG")
bytes = output.getvalue()
examples.extend([{
"image": {
"bytes": bytes
},
"audio_file": audio_file,
"slice": slice,
}])
except Exception as e:
print(e)
finally:
if len(examples) == 0:
logger.warn('No valid audio files were found.')
return
ds = Dataset.from_pandas(
pd.DataFrame(examples),
features=Features({
"image": Image(),
"audio_file": Value(dtype="string"),
"slice": Value(dtype="int16"),
}),
)
dsd = DatasetDict({"train": ds})
dsd.save_to_disk(os.path.join(args.output_dir))
if args.push_to_hub:
dsd.push_to_hub(args.push_to_hub)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description=
"Create dataset of Mel spectrograms from directory of audio files.")
parser.add_argument("--input_dir", type=str)
parser.add_argument("--output_dir", type=str, default="data")
parser.add_argument("--resolution",
type=str,
default="256",
help="Either square resolution or width,height.")
parser.add_argument("--hop_length", type=int, default=512)
parser.add_argument("--push_to_hub", type=str, default=None)
parser.add_argument("--sample_rate", type=int, default=22050)
args = parser.parse_args()
if args.input_dir is None:
raise ValueError(
"You must specify an input directory for the audio files.")
# Handle the resolutions.
try:
args.resolution = (int(args.resolution), int(args.resolution))
except ValueError:
try:
args.resolution = tuple(int(x) for x in args.resolution.split(","))
if len(args.resolution) != 2:
raise ValueError
except ValueError:
raise ValueError(
"Resolution must be a tuple of two integers or a single integer."
)
assert isinstance(args.resolution, tuple)
main(args)