Spaces:
Sleeping
Sleeping
File size: 10,752 Bytes
6e19f63 fc0b4cb 6e19f63 9e8ab62 6e19f63 fc0b4cb 7928d62 6e19f63 9e8ab62 6e19f63 9e8ab62 7928d62 9e8ab62 6e19f63 9e8ab62 7928d62 6e19f63 43d514c fc0b4cb 6e19f63 fc0b4cb 6e19f63 fc0b4cb 6e19f63 fc0b4cb 6e19f63 7928d62 9e8ab62 6e19f63 9e8ab62 57a2c17 9e8ab62 6e19f63 9e8ab62 fc0b4cb 9e8ab62 6e19f63 fc0b4cb 9e8ab62 fc0b4cb 9e8ab62 57a2c17 9e8ab62 57a2c17 6e19f63 57a2c17 6e19f63 57a2c17 6e19f63 9e8ab62 6e19f63 9e8ab62 7928d62 fc0b4cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
import gradio as gr
import requests
import re
import tempfile
import importlib.util
import sys
import os
import ast
def call_openai_api(api_key, prompt):
"""Direct API call to OpenAI"""
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {api_key}"
}
# Determine Gradio version to ensure compatibility
gradio_version = gr.__version__
major_version = int(gradio_version.split('.')[0])
system_prompt = f"""You are an expert Gradio developer.
Create a standalone Gradio application based on the user's prompt.
Your response should ONLY include Python code without any explanation.
IMPORTANT: You must use Gradio version {gradio_version} (Gradio {major_version}.x) syntax.
For Gradio 3.x: Use the `.click()` method on buttons and elements to connect them to functions.
For Gradio 4.x: Use the event subscription pattern instead of .click().
The code must:
1. Import all necessary libraries
2. Define a complete, functional Gradio interface
3. DO NOT include a launch command or if __name__ == "__main__" block
4. The interface should be assigned to a variable named 'demo'
5. Handle errors gracefully
6. Be completely self-contained in a single script
Example for Gradio 3.x:
```python
import gradio as gr
def greet(name):
return f"Hello, {name}!"
with gr.Blocks() as demo:
name_input = gr.Textbox(label="Your Name")
greet_btn = gr.Button("Greet")
output = gr.Textbox(label="Output")
greet_btn.click(fn=greet, inputs=name_input, outputs=output)
```
"""
data = {
"model": "gpt-4o",
"messages": [
{"role": "system", "content": system_prompt},
{"role": "user", "content": prompt}
],
"temperature": 0.2,
"max_tokens": 4000
}
response = requests.post(
"https://api.openai.com/v1/chat/completions",
headers=headers,
json=data
)
if response.status_code != 200:
return None, f"API Error: {response.status_code} - {response.text}"
result = response.json()
return result["choices"][0]["message"]["content"], None
def extract_code_blocks(text):
"""Extract code blocks from markdown"""
pattern = r'```(?:python)?\s*([\s\S]*?)```'
matches = re.findall(pattern, text)
if not matches and text.strip():
if re.search(r'import\s+\w+|def\s+\w+\(|class\s+\w+:|if\s+__name__\s*==\s*[\'"]__main__[\'"]:', text):
return [text.strip()]
return [match.strip() for match in matches]
def validate_gradio_code(code):
"""Basic validation of the generated code"""
try:
tree = ast.parse(code)
allowed_modules = ['gradio', 'numpy', 'pandas', 'matplotlib', 'PIL', 'os', 'io', 'base64',
'time', 'datetime', 'json', 'random', 'math', 'sys', 're', 'pathlib',
'collections', 'typing', 'warnings']
for node in ast.walk(tree):
if isinstance(node, ast.Import):
for name in node.names:
if name.name not in allowed_modules:
return False, f"Unauthorized import: {name.name}"
elif isinstance(node, ast.ImportFrom):
if node.module not in allowed_modules and node.module is not None:
return False, f"Unauthorized import from: {node.module}"
return True, None
except SyntaxError as e:
return False, f"Syntax error in the code: {str(e)}"
except Exception as e:
return False, f"Error validating code: {str(e)}"
def load_generated_app(code):
"""Load and run the generated Gradio app"""
# Save code to temp file
with tempfile.NamedTemporaryFile(suffix='.py', delete=False) as f:
f.write(code.encode('utf-8'))
temp_file = f.name
try:
# Import module
module_name = os.path.basename(temp_file).replace('.py', '')
spec = importlib.util.spec_from_file_location(module_name, temp_file)
module = importlib.util.module_from_spec(spec)
sys.modules[module_name] = module
spec.loader.exec_module(module)
# Get the Gradio interface
if hasattr(module, 'demo'):
return module.demo, None
else:
return None, "No 'demo' variable found in the generated code"
except Exception as e:
return None, f"Error: {str(e)}"
finally:
try:
os.unlink(temp_file)
except:
pass
def generate_app(api_key, prompt):
"""Main function to generate and load a Gradio app"""
# Validate API key format
if not api_key or len(api_key) < 20 or not api_key.startswith("sk-"):
return None, "Please provide a valid OpenAI API key"
# Call OpenAI API
response, error = call_openai_api(api_key, prompt)
if error:
return None, error
# Extract code blocks
code_blocks = extract_code_blocks(response)
if not code_blocks:
return None, "No valid code found in the response"
code = code_blocks[0]
# Validate code
is_valid, error_msg = validate_gradio_code(code)
if not is_valid:
return code, error_msg
# Load the app
app, app_error = load_generated_app(code)
if app_error:
return code, app_error
return code, app
# Example Gradio apps for common requests
EXAMPLE_APPS = {
"calculator": """
import gradio as gr
import numpy as np
def calculate(num1, num2, operation):
if operation == "Add":
return num1 + num2
elif operation == "Subtract":
return num1 - num2
elif operation == "Multiply":
return num1 * num2
elif operation == "Divide":
if num2 == 0:
return "Error: Division by zero"
return num1 / num2
else:
return "Please select an operation"
with gr.Blocks() as demo:
gr.Markdown("# Simple Calculator")
with gr.Row():
num1_input = gr.Number(label="First Number")
num2_input = gr.Number(label="Second Number")
op_dropdown = gr.Dropdown(
["Add", "Subtract", "Multiply", "Divide"],
label="Operation"
)
calculate_btn = gr.Button("Calculate")
result = gr.Number(label="Result")
calculate_btn.click(
fn=calculate,
inputs=[num1_input, num2_input, op_dropdown],
outputs=result
)
""",
"image_filter": """
import gradio as gr
import numpy as np
from PIL import Image, ImageEnhance, ImageFilter
def apply_filter(image, filter_type, intensity):
if image is None:
return None
img = Image.fromarray(image)
if filter_type == "Blur":
filtered = img.filter(ImageFilter.GaussianBlur(radius=intensity))
elif filter_type == "Sharpen":
enhancer = ImageEnhance.Sharpness(img)
filtered = enhancer.enhance(1 + intensity)
elif filter_type == "Brightness":
enhancer = ImageEnhance.Brightness(img)
filtered = enhancer.enhance(1 + intensity)
elif filter_type == "Contrast":
enhancer = ImageEnhance.Contrast(img)
filtered = enhancer.enhance(1 + intensity)
else:
filtered = img
return np.array(filtered)
with gr.Blocks() as demo:
gr.Markdown("# Image Filter App")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Original Image")
filter_type = gr.Dropdown(
["Blur", "Sharpen", "Brightness", "Contrast"],
label="Filter Type",
value="Blur"
)
intensity = gr.Slider(0, 2, 0.5, label="Intensity")
apply_btn = gr.Button("Apply Filter")
with gr.Column():
output_image = gr.Image(label="Filtered Image")
apply_btn.click(
fn=apply_filter,
inputs=[input_image, filter_type, intensity],
outputs=output_image
)
"""
}
# Create the main UI
with gr.Blocks(title="AI Gradio App Generator") as demo:
gr.Markdown("# 🤖 AI Gradio App Generator")
gr.Markdown("Describe the Gradio app you want, and I'll generate it using OpenAI's API.")
with gr.Row():
with gr.Column():
api_key = gr.Textbox(
label="OpenAI API Key",
placeholder="sk-...",
type="password",
info="Your key is used only for this session"
)
prompt = gr.Textbox(
label="App Description",
placeholder="Describe the Gradio app you want to create...",
lines=5
)
submit_btn = gr.Button("Generate App", variant="primary")
with gr.Accordion("Generated Code", open=False):
code_output = gr.Code(language="python", label="Generated Code")
status_output = gr.Markdown("")
generated_app_container = gr.Group(visible=False)
def on_submit(api_key_input, prompt_text):
try:
# If it's a simple request for a common app, use our built-in example
lower_prompt = prompt_text.lower()
for key, example_code in EXAMPLE_APPS.items():
if key in lower_prompt:
try:
app, app_error = load_generated_app(example_code)
if app_error:
return example_code, f"⚠️ {app_error}", gr.update(visible=False)
return example_code, "✅ App generated successfully (from template)!", gr.update(visible=True, value=app)
except Exception as e:
pass # Fall back to API generation if template fails
# Generate custom app via API
code, result = generate_app(api_key_input, prompt_text)
if code is None:
return None, f"⚠️ {result}", gr.update(visible=False)
if isinstance(result, str): # Error message
return code, f"⚠️ {result}", gr.update(visible=False)
# Success - result is the app
return code, "✅ App generated successfully!", gr.update(visible=True, value=result)
except Exception as e:
return None, f"⚠️ Error: {str(e)}", gr.update(visible=False)
submit_btn.click(
on_submit,
inputs=[api_key, prompt],
outputs=[code_output, status_output, generated_app_container]
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860) |