nakas's picture
Update app.py
da5bcdc verified
raw
history blame
12.3 kB
import gradio as gr
import requests
import re
import tempfile
import importlib.util
import sys
import os
import ast
import traceback
from types import MethodType
# Check Gradio version
GRADIO_VERSION = gr.__version__
print(f"Gradio version: {GRADIO_VERSION}")
# Patch Gradio Button class if needed
if not hasattr(gr.Button, 'click'):
# For Gradio 4.x, we need to add a click method
def patched_click(self, fn, inputs=None, outputs=None):
"""Patched click method for Gradio 4.x buttons"""
if inputs is None:
inputs = []
if outputs is None:
outputs = []
# In Gradio 4.x, this would be the event listener pattern
return self.click(fn=fn, inputs=inputs, outputs=outputs)
# Try to add the method, might not work but worth a try
try:
gr.Button.click = patched_click
print("Added click method to Button class")
except Exception as e:
print(f"Failed to patch Button class: {e}")
# Function to generate working code for the current Gradio version
def generate_compatible_code(prompt):
"""Generate code that's guaranteed to work with this Gradio version"""
if "hello world" in prompt.lower():
return """
import gradio as gr
# Creating a simple hello world app that works in all Gradio versions
def say_hello():
return "Hello, World!"
# Create the Gradio interface
demo = gr.Interface(
fn=say_hello,
inputs=[],
outputs=gr.Textbox(label="Output"),
title="Hello World App"
)
"""
elif "calculator" in prompt.lower():
return """
import gradio as gr
import numpy as np
# Create a simple calculator
def calculate(num1, num2, operation):
if operation == "Add":
return num1 + num2
elif operation == "Subtract":
return num1 - num2
elif operation == "Multiply":
return num1 * num2
elif operation == "Divide":
if num2 == 0:
return "Error: Division by zero"
return num1 / num2
else:
return "Please select an operation"
# Create the Gradio interface - works in all versions
demo = gr.Interface(
fn=calculate,
inputs=[
gr.Number(label="First Number"),
gr.Number(label="Second Number"),
gr.Dropdown(["Add", "Subtract", "Multiply", "Divide"], label="Operation")
],
outputs=gr.Number(label="Result"),
title="Simple Calculator"
)
"""
elif "image" in prompt.lower() or "filter" in prompt.lower():
return """
import gradio as gr
import numpy as np
from PIL import Image, ImageEnhance
# Create an image brightness adjuster
def adjust_brightness(image, brightness_factor):
if image is None:
return None
# Convert to PIL Image
pil_image = Image.fromarray(image)
# Adjust brightness
enhancer = ImageEnhance.Brightness(pil_image)
brightened = enhancer.enhance(brightness_factor)
# Return as numpy array
return np.array(brightened)
# Create the Gradio interface - works in all versions
demo = gr.Interface(
fn=adjust_brightness,
inputs=[
gr.Image(label="Input Image"),
gr.Slider(0.1, 3.0, 1.0, label="Brightness Factor")
],
outputs=gr.Image(label="Adjusted Image"),
title="Image Brightness Adjuster"
)
"""
elif "text" in prompt.lower() or "sentiment" in prompt.lower():
return """
import gradio as gr
import random
# Simple sentiment analyzer (mock)
def analyze_sentiment(text):
if not text:
return "Please enter some text"
# Calculate length and random sentiment for demo
text_length = len(text)
sentiment = random.choice(["Positive", "Neutral", "Negative"])
return f"Length: {text_length} characters | Sentiment: {sentiment}"
# Create the Gradio interface - works in all versions
demo = gr.Interface(
fn=analyze_sentiment,
inputs=gr.Textbox(lines=5, label="Enter text here"),
outputs=gr.Textbox(label="Analysis Result"),
title="Text Analyzer"
)
"""
else:
return """
import gradio as gr
# A general purpose demo that works in all Gradio versions
def process_input(text_input):
if not text_input:
return "Please enter some input"
# Process the input
word_count = len(text_input.split())
char_count = len(text_input)
return f"Word count: {word_count} | Character count: {char_count}"
# Create the Gradio interface - works in all versions
demo = gr.Interface(
fn=process_input,
inputs=gr.Textbox(lines=3, label="Input"),
outputs=gr.Textbox(label="Output"),
title="Text Processor"
)
"""
def call_openai_api(api_key, prompt):
"""Direct API call to OpenAI"""
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {api_key}"
}
# Create a system prompt specifically for gr.Interface() style apps
system_prompt = f"""You are an expert Gradio developer.
Create a standalone Gradio application based on the user's prompt.
Your response should ONLY include Python code without any explanation.
IMPORTANT: You MUST use gr.Interface() instead of gr.Blocks() for compatibility.
DO NOT use Button.click() or any other component events.
Here's a template to follow:
```python
import gradio as gr
def my_function(input1, input2):
# Process inputs
result = input1 + input2 # Example operation
return result
# Create the Gradio interface
demo = gr.Interface(
fn=my_function,
inputs=[gr.Textbox(label="Input 1"), gr.Textbox(label="Input 2")],
outputs=gr.Textbox(label="Output"),
title="My App"
)
```
The code must:
1. Import necessary libraries
2. Define functions that handle the app logic
3. Create a gr.Interface named 'demo'
4. NOT include a launch command or if __name__ == "__main__" block
5. Avoid using component events or callbacks
"""
data = {
"model": "gpt-4o",
"messages": [
{"role": "system", "content": system_prompt},
{"role": "user", "content": prompt}
],
"temperature": 0.2,
"max_tokens": 4000
}
response = requests.post(
"https://api.openai.com/v1/chat/completions",
headers=headers,
json=data
)
if response.status_code != 200:
return None, f"API Error: {response.status_code} - {response.text}"
result = response.json()
return result["choices"][0]["message"]["content"], None
def extract_code_blocks(text):
"""Extract code blocks from markdown"""
pattern = r'```(?:python)?\s*([\s\S]*?)```'
matches = re.findall(pattern, text)
if not matches and text.strip():
if re.search(r'import\s+\w+|def\s+\w+\(|class\s+\w+:|if\s+__name__\s*==\s*[\'"]__main__[\'"]:', text):
return [text.strip()]
return [match.strip() for match in matches]
def load_generated_app(code):
"""Load and run the generated Gradio app"""
# Save code to temp file
with tempfile.NamedTemporaryFile(suffix='.py', delete=False) as f:
f.write(code.encode('utf-8'))
temp_file = f.name
try:
# Import module
module_name = os.path.basename(temp_file).replace('.py', '')
spec = importlib.util.spec_from_file_location(module_name, temp_file)
module = importlib.util.module_from_spec(spec)
sys.modules[module_name] = module
spec.loader.exec_module(module)
# Get the Gradio interface
if hasattr(module, 'demo'):
return module.demo, None
else:
return None, "No 'demo' variable found in the generated code"
except Exception as e:
error_details = traceback.format_exc()
return None, f"{str(e)}\n{error_details}"
finally:
try:
os.unlink(temp_file)
except:
pass
# Create the main UI
with gr.Blocks(title="AI Gradio App Generator") as demo:
gr.Markdown(f"# 🤖 AI Gradio App Generator (v{GRADIO_VERSION})")
gr.Markdown("Describe the Gradio app you want, and I'll generate it for you.")
with gr.Row():
with gr.Column():
api_key = gr.Textbox(
label="OpenAI API Key",
placeholder="sk-...",
type="password",
info="Your key is used only for this session"
)
prompt = gr.Textbox(
label="App Description",
placeholder="Describe the Gradio app you want to create...",
lines=5
)
with gr.Row():
submit_btn = gr.Button("Generate App", variant="primary")
skip_api_btn = gr.Button("Try Without API", variant="secondary")
with gr.Accordion("Generated Code", open=False):
code_output = gr.Code(language="python", label="Generated Code")
status_output = gr.Markdown("")
generated_app_container = gr.Group(visible=False)
def on_submit(api_key_input, prompt_text):
# Validate API key format
if not api_key_input or len(api_key_input) < 20 or not api_key_input.startswith("sk-"):
return None, "⚠️ Please provide a valid OpenAI API key", gr.update(visible=False)
try:
# Generate custom app via API
response, api_error = call_openai_api(api_key_input, prompt_text)
if api_error:
return None, f"⚠️ {api_error}", gr.update(visible=False)
# Extract code blocks
code_blocks = extract_code_blocks(response)
if not code_blocks:
return None, "⚠️ No valid code found in the response", gr.update(visible=False)
code = code_blocks[0]
# Try to load the app
app, load_error = load_generated_app(code)
if load_error:
# If there's an error, fallback to built-in templates
fallback_code = generate_compatible_code(prompt_text)
app, fallback_error = load_generated_app(fallback_code)
if fallback_error:
return fallback_code, f"⚠️ Error loading app: {fallback_error}", gr.update(visible=False)
return fallback_code, "✅ App generated from template (API generation failed)", gr.update(visible=True, value=app)
# Success!
return code, "✅ App generated successfully!", gr.update(visible=True, value=app)
except Exception as e:
error_details = traceback.format_exc()
# Try fallback
try:
fallback_code = generate_compatible_code(prompt_text)
app, fallback_error = load_generated_app(fallback_code)
if fallback_error:
return None, f"⚠️ Error: {str(e)}\n\nFallback also failed: {fallback_error}", gr.update(visible=False)
return fallback_code, "✅ App generated from template (after error recovery)", gr.update(visible=True, value=app)
except:
return None, f"⚠️ Error: {str(e)}\n{error_details}", gr.update(visible=False)
def on_skip_api():
"""Generate an app without using the API"""
app_code = generate_compatible_code(prompt.value)
try:
app, error = load_generated_app(app_code)
if error:
return app_code, f"⚠️ Error loading template: {error}", gr.update(visible=False)
return app_code, "✅ App generated from built-in template", gr.update(visible=True, value=app)
except Exception as e:
return app_code, f"⚠️ Error: {str(e)}", gr.update(visible=False)
submit_btn.click(
on_submit,
inputs=[api_key, prompt],
outputs=[code_output, status_output, generated_app_container]
)
skip_api_btn.click(
on_skip_api,
inputs=[],
outputs=[code_output, status_output, generated_app_container]
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860)