Spaces:
Sleeping
Sleeping
import gradio as gr | |
import requests | |
import re | |
import tempfile | |
import importlib.util | |
import sys | |
import os | |
import ast | |
import traceback | |
from types import MethodType | |
# Check Gradio version | |
GRADIO_VERSION = gr.__version__ | |
print(f"Gradio version: {GRADIO_VERSION}") | |
# Patch Gradio Button class if needed | |
if not hasattr(gr.Button, 'click'): | |
# For Gradio 4.x, we need to add a click method | |
def patched_click(self, fn, inputs=None, outputs=None): | |
"""Patched click method for Gradio 4.x buttons""" | |
if inputs is None: | |
inputs = [] | |
if outputs is None: | |
outputs = [] | |
# In Gradio 4.x, this would be the event listener pattern | |
return self.click(fn=fn, inputs=inputs, outputs=outputs) | |
# Try to add the method, might not work but worth a try | |
try: | |
gr.Button.click = patched_click | |
print("Added click method to Button class") | |
except Exception as e: | |
print(f"Failed to patch Button class: {e}") | |
# Function to generate working code for the current Gradio version | |
def generate_compatible_code(prompt): | |
"""Generate code that's guaranteed to work with this Gradio version""" | |
if "hello world" in prompt.lower(): | |
return """ | |
import gradio as gr | |
# Creating a simple hello world app that works in all Gradio versions | |
def say_hello(): | |
return "Hello, World!" | |
# Create the Gradio interface | |
demo = gr.Interface( | |
fn=say_hello, | |
inputs=[], | |
outputs=gr.Textbox(label="Output"), | |
title="Hello World App" | |
) | |
""" | |
elif "calculator" in prompt.lower(): | |
return """ | |
import gradio as gr | |
import numpy as np | |
# Create a simple calculator | |
def calculate(num1, num2, operation): | |
if operation == "Add": | |
return num1 + num2 | |
elif operation == "Subtract": | |
return num1 - num2 | |
elif operation == "Multiply": | |
return num1 * num2 | |
elif operation == "Divide": | |
if num2 == 0: | |
return "Error: Division by zero" | |
return num1 / num2 | |
else: | |
return "Please select an operation" | |
# Create the Gradio interface - works in all versions | |
demo = gr.Interface( | |
fn=calculate, | |
inputs=[ | |
gr.Number(label="First Number"), | |
gr.Number(label="Second Number"), | |
gr.Dropdown(["Add", "Subtract", "Multiply", "Divide"], label="Operation") | |
], | |
outputs=gr.Number(label="Result"), | |
title="Simple Calculator" | |
) | |
""" | |
elif "image" in prompt.lower() or "filter" in prompt.lower(): | |
return """ | |
import gradio as gr | |
import numpy as np | |
from PIL import Image, ImageEnhance | |
# Create an image brightness adjuster | |
def adjust_brightness(image, brightness_factor): | |
if image is None: | |
return None | |
# Convert to PIL Image | |
pil_image = Image.fromarray(image) | |
# Adjust brightness | |
enhancer = ImageEnhance.Brightness(pil_image) | |
brightened = enhancer.enhance(brightness_factor) | |
# Return as numpy array | |
return np.array(brightened) | |
# Create the Gradio interface - works in all versions | |
demo = gr.Interface( | |
fn=adjust_brightness, | |
inputs=[ | |
gr.Image(label="Input Image"), | |
gr.Slider(0.1, 3.0, 1.0, label="Brightness Factor") | |
], | |
outputs=gr.Image(label="Adjusted Image"), | |
title="Image Brightness Adjuster" | |
) | |
""" | |
elif "text" in prompt.lower() or "sentiment" in prompt.lower(): | |
return """ | |
import gradio as gr | |
import random | |
# Simple sentiment analyzer (mock) | |
def analyze_sentiment(text): | |
if not text: | |
return "Please enter some text" | |
# Calculate length and random sentiment for demo | |
text_length = len(text) | |
sentiment = random.choice(["Positive", "Neutral", "Negative"]) | |
return f"Length: {text_length} characters | Sentiment: {sentiment}" | |
# Create the Gradio interface - works in all versions | |
demo = gr.Interface( | |
fn=analyze_sentiment, | |
inputs=gr.Textbox(lines=5, label="Enter text here"), | |
outputs=gr.Textbox(label="Analysis Result"), | |
title="Text Analyzer" | |
) | |
""" | |
else: | |
return """ | |
import gradio as gr | |
# A general purpose demo that works in all Gradio versions | |
def process_input(text_input): | |
if not text_input: | |
return "Please enter some input" | |
# Process the input | |
word_count = len(text_input.split()) | |
char_count = len(text_input) | |
return f"Word count: {word_count} | Character count: {char_count}" | |
# Create the Gradio interface - works in all versions | |
demo = gr.Interface( | |
fn=process_input, | |
inputs=gr.Textbox(lines=3, label="Input"), | |
outputs=gr.Textbox(label="Output"), | |
title="Text Processor" | |
) | |
""" | |
def call_openai_api(api_key, prompt): | |
"""Direct API call to OpenAI""" | |
headers = { | |
"Content-Type": "application/json", | |
"Authorization": f"Bearer {api_key}" | |
} | |
# Create a system prompt specifically for gr.Interface() style apps | |
system_prompt = f"""You are an expert Gradio developer. | |
Create a standalone Gradio application based on the user's prompt. | |
Your response should ONLY include Python code without any explanation. | |
IMPORTANT: You MUST use gr.Interface() instead of gr.Blocks() for compatibility. | |
DO NOT use Button.click() or any other component events. | |
Here's a template to follow: | |
```python | |
import gradio as gr | |
def my_function(input1, input2): | |
# Process inputs | |
result = input1 + input2 # Example operation | |
return result | |
# Create the Gradio interface | |
demo = gr.Interface( | |
fn=my_function, | |
inputs=[gr.Textbox(label="Input 1"), gr.Textbox(label="Input 2")], | |
outputs=gr.Textbox(label="Output"), | |
title="My App" | |
) | |
``` | |
The code must: | |
1. Import necessary libraries | |
2. Define functions that handle the app logic | |
3. Create a gr.Interface named 'demo' | |
4. NOT include a launch command or if __name__ == "__main__" block | |
5. Avoid using component events or callbacks | |
""" | |
data = { | |
"model": "gpt-4o", | |
"messages": [ | |
{"role": "system", "content": system_prompt}, | |
{"role": "user", "content": prompt} | |
], | |
"temperature": 0.2, | |
"max_tokens": 4000 | |
} | |
response = requests.post( | |
"https://api.openai.com/v1/chat/completions", | |
headers=headers, | |
json=data | |
) | |
if response.status_code != 200: | |
return None, f"API Error: {response.status_code} - {response.text}" | |
result = response.json() | |
return result["choices"][0]["message"]["content"], None | |
def extract_code_blocks(text): | |
"""Extract code blocks from markdown""" | |
pattern = r'```(?:python)?\s*([\s\S]*?)```' | |
matches = re.findall(pattern, text) | |
if not matches and text.strip(): | |
if re.search(r'import\s+\w+|def\s+\w+\(|class\s+\w+:|if\s+__name__\s*==\s*[\'"]__main__[\'"]:', text): | |
return [text.strip()] | |
return [match.strip() for match in matches] | |
def load_generated_app(code): | |
"""Load and run the generated Gradio app""" | |
# Save code to temp file | |
with tempfile.NamedTemporaryFile(suffix='.py', delete=False) as f: | |
f.write(code.encode('utf-8')) | |
temp_file = f.name | |
try: | |
# Import module | |
module_name = os.path.basename(temp_file).replace('.py', '') | |
spec = importlib.util.spec_from_file_location(module_name, temp_file) | |
module = importlib.util.module_from_spec(spec) | |
sys.modules[module_name] = module | |
spec.loader.exec_module(module) | |
# Get the Gradio interface | |
if hasattr(module, 'demo'): | |
return module.demo, None | |
else: | |
return None, "No 'demo' variable found in the generated code" | |
except Exception as e: | |
error_details = traceback.format_exc() | |
return None, f"{str(e)}\n{error_details}" | |
finally: | |
try: | |
os.unlink(temp_file) | |
except: | |
pass | |
# Create the main UI | |
with gr.Blocks(title="AI Gradio App Generator") as demo: | |
gr.Markdown(f"# 🤖 AI Gradio App Generator (v{GRADIO_VERSION})") | |
gr.Markdown("Describe the Gradio app you want, and I'll generate it for you.") | |
with gr.Row(): | |
with gr.Column(): | |
api_key = gr.Textbox( | |
label="OpenAI API Key", | |
placeholder="sk-...", | |
type="password", | |
info="Your key is used only for this session" | |
) | |
prompt = gr.Textbox( | |
label="App Description", | |
placeholder="Describe the Gradio app you want to create...", | |
lines=5 | |
) | |
with gr.Row(): | |
submit_btn = gr.Button("Generate App", variant="primary") | |
skip_api_btn = gr.Button("Try Without API", variant="secondary") | |
with gr.Accordion("Generated Code", open=False): | |
code_output = gr.Code(language="python", label="Generated Code") | |
status_output = gr.Markdown("") | |
generated_app_container = gr.Group(visible=False) | |
def on_submit(api_key_input, prompt_text): | |
# Validate API key format | |
if not api_key_input or len(api_key_input) < 20 or not api_key_input.startswith("sk-"): | |
return None, "⚠️ Please provide a valid OpenAI API key", gr.update(visible=False) | |
try: | |
# Generate custom app via API | |
response, api_error = call_openai_api(api_key_input, prompt_text) | |
if api_error: | |
return None, f"⚠️ {api_error}", gr.update(visible=False) | |
# Extract code blocks | |
code_blocks = extract_code_blocks(response) | |
if not code_blocks: | |
return None, "⚠️ No valid code found in the response", gr.update(visible=False) | |
code = code_blocks[0] | |
# Try to load the app | |
app, load_error = load_generated_app(code) | |
if load_error: | |
# If there's an error, fallback to built-in templates | |
fallback_code = generate_compatible_code(prompt_text) | |
app, fallback_error = load_generated_app(fallback_code) | |
if fallback_error: | |
return fallback_code, f"⚠️ Error loading app: {fallback_error}", gr.update(visible=False) | |
return fallback_code, "✅ App generated from template (API generation failed)", gr.update(visible=True, value=app) | |
# Success! | |
return code, "✅ App generated successfully!", gr.update(visible=True, value=app) | |
except Exception as e: | |
error_details = traceback.format_exc() | |
# Try fallback | |
try: | |
fallback_code = generate_compatible_code(prompt_text) | |
app, fallback_error = load_generated_app(fallback_code) | |
if fallback_error: | |
return None, f"⚠️ Error: {str(e)}\n\nFallback also failed: {fallback_error}", gr.update(visible=False) | |
return fallback_code, "✅ App generated from template (after error recovery)", gr.update(visible=True, value=app) | |
except: | |
return None, f"⚠️ Error: {str(e)}\n{error_details}", gr.update(visible=False) | |
def on_skip_api(): | |
"""Generate an app without using the API""" | |
app_code = generate_compatible_code(prompt.value) | |
try: | |
app, error = load_generated_app(app_code) | |
if error: | |
return app_code, f"⚠️ Error loading template: {error}", gr.update(visible=False) | |
return app_code, "✅ App generated from built-in template", gr.update(visible=True, value=app) | |
except Exception as e: | |
return app_code, f"⚠️ Error: {str(e)}", gr.update(visible=False) | |
submit_btn.click( | |
on_submit, | |
inputs=[api_key, prompt], | |
outputs=[code_output, status_output, generated_app_container] | |
) | |
skip_api_btn.click( | |
on_skip_api, | |
inputs=[], | |
outputs=[code_output, status_output, generated_app_container] | |
) | |
if __name__ == "__main__": | |
demo.launch(server_name="0.0.0.0", server_port=7860) |