Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,82 +1,343 @@
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import sys
|
|
|
|
|
3 |
|
4 |
-
# Print version info
|
5 |
-
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
-
# Hello World function
|
9 |
def greet(name):
|
10 |
return f"Hello, {name}!"
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
if num2 == 0:
|
22 |
return "Error: Division by zero"
|
23 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
# Text Analysis function
|
26 |
def analyze_text(text):
|
27 |
if not text:
|
28 |
return "Please enter some text"
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
|
34 |
-
return f"Characters: {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
#
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
num2 = gr.Number(label="Second Number", value=3)
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
)
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
text_input = gr.Textbox(label="Enter text to analyze", lines=5)
|
65 |
-
text_result = gr.Textbox(label="Analysis Result")
|
66 |
-
analyze_btn = gr.Button("Analyze Text")
|
67 |
-
analyze_btn.click(fn=analyze_text, inputs=text_input, outputs=text_result)
|
68 |
-
|
69 |
-
gr.Markdown("""
|
70 |
-
### About This Demo
|
71 |
-
|
72 |
-
This is a simple demonstration of Gradio functionality with:
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
3. A text analysis tool
|
77 |
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
-
if
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
import gradio as gr
|
3 |
+
import subprocess
|
4 |
+
import tempfile
|
5 |
+
import os
|
6 |
+
import time
|
7 |
+
import signal
|
8 |
+
import requests
|
9 |
+
import re
|
10 |
+
import json
|
11 |
import sys
|
12 |
+
from pathlib import Path
|
13 |
+
import atexit
|
14 |
|
15 |
+
# Print version info
|
16 |
+
st.set_page_config(
|
17 |
+
page_title="Gradio App Generator",
|
18 |
+
page_icon="🤖",
|
19 |
+
layout="wide"
|
20 |
+
)
|
21 |
+
|
22 |
+
# Directory to store temporary apps
|
23 |
+
TEMP_DIR = Path(tempfile.gettempdir()) / "gradio_apps"
|
24 |
+
os.makedirs(TEMP_DIR, exist_ok=True)
|
25 |
+
|
26 |
+
# Track running processes
|
27 |
+
if 'process' not in st.session_state:
|
28 |
+
st.session_state.process = None
|
29 |
+
st.session_state.app_port = None
|
30 |
+
st.session_state.app_path = None
|
31 |
+
|
32 |
+
# Clean up on exit
|
33 |
+
def cleanup():
|
34 |
+
if st.session_state.process and st.session_state.process.poll() is None:
|
35 |
+
st.session_state.process.terminate()
|
36 |
+
try:
|
37 |
+
st.session_state.process.wait(timeout=5)
|
38 |
+
except subprocess.TimeoutExpired:
|
39 |
+
st.session_state.process.kill()
|
40 |
+
|
41 |
+
# Clean up temp files
|
42 |
+
if st.session_state.app_path and os.path.exists(st.session_state.app_path):
|
43 |
+
try:
|
44 |
+
os.unlink(st.session_state.app_path)
|
45 |
+
except:
|
46 |
+
pass
|
47 |
+
|
48 |
+
atexit.register(cleanup)
|
49 |
+
|
50 |
+
def stop_running_app():
|
51 |
+
"""Stop the currently running Gradio app"""
|
52 |
+
if st.session_state.process and st.session_state.process.poll() is None:
|
53 |
+
st.session_state.process.terminate()
|
54 |
+
try:
|
55 |
+
st.session_state.process.wait(timeout=5)
|
56 |
+
except subprocess.TimeoutExpired:
|
57 |
+
st.session_state.process.kill()
|
58 |
+
|
59 |
+
st.session_state.process = None
|
60 |
+
st.session_state.app_port = None
|
61 |
+
|
62 |
+
if st.session_state.app_path and os.path.exists(st.session_state.app_path):
|
63 |
+
try:
|
64 |
+
os.unlink(st.session_state.app_path)
|
65 |
+
except:
|
66 |
+
pass
|
67 |
+
st.session_state.app_path = None
|
68 |
+
|
69 |
+
return True
|
70 |
+
|
71 |
+
return False
|
72 |
+
|
73 |
+
def get_openai_code(api_key, description):
|
74 |
+
"""Get code from OpenAI API"""
|
75 |
+
prompt = f"""Create a simple Gradio app that {description}.
|
76 |
+
|
77 |
+
IMPORTANT: The app should:
|
78 |
+
1. Use gr.Interface (not Blocks)
|
79 |
+
2. Have flagging_callback=None to avoid permission issues
|
80 |
+
3. Include demo.launch(server_name="0.0.0.0", server_port=PORT) at the end
|
81 |
+
4. Be self-contained with only standard libraries
|
82 |
+
|
83 |
+
Provide ONLY Python code with no explanation."""
|
84 |
+
|
85 |
+
try:
|
86 |
+
response = requests.post(
|
87 |
+
"https://api.openai.com/v1/chat/completions",
|
88 |
+
headers={
|
89 |
+
"Content-Type": "application/json",
|
90 |
+
"Authorization": f"Bearer {api_key}"
|
91 |
+
},
|
92 |
+
json={
|
93 |
+
"model": "gpt-4o",
|
94 |
+
"messages": [
|
95 |
+
{"role": "system", "content": "You are a Gradio expert. Provide only Python code without explanations."},
|
96 |
+
{"role": "user", "content": prompt}
|
97 |
+
],
|
98 |
+
"temperature": 0.2
|
99 |
+
},
|
100 |
+
timeout=30
|
101 |
+
)
|
102 |
+
|
103 |
+
if response.status_code != 200:
|
104 |
+
return None, f"API Error: {response.status_code}"
|
105 |
+
|
106 |
+
content = response.json()["choices"][0]["message"]["content"]
|
107 |
+
|
108 |
+
# Extract code blocks if present
|
109 |
+
code_pattern = r'```python\s*([\s\S]*?)```'
|
110 |
+
code_matches = re.findall(code_pattern, content)
|
111 |
+
|
112 |
+
if code_matches:
|
113 |
+
return code_matches[0], None
|
114 |
+
|
115 |
+
# If no code blocks found, use the whole content
|
116 |
+
return content, None
|
117 |
+
|
118 |
+
except Exception as e:
|
119 |
+
return None, f"Error: {str(e)}"
|
120 |
+
|
121 |
+
def run_gradio_app(code, port=8050):
|
122 |
+
"""Run a Gradio app with the given code"""
|
123 |
+
# Stop any existing app
|
124 |
+
stop_running_app()
|
125 |
+
|
126 |
+
# Replace PORT in the code with the actual port
|
127 |
+
code = code.replace("PORT", str(port))
|
128 |
+
|
129 |
+
# Make sure flagging is disabled
|
130 |
+
if "gr.Interface" in code and "flagging_callback=None" not in code:
|
131 |
+
code = code.replace("gr.Interface(", "gr.Interface(flagging_callback=None, ")
|
132 |
+
|
133 |
+
# Create a temporary file
|
134 |
+
fd, path = tempfile.mkstemp(suffix='.py', dir=TEMP_DIR)
|
135 |
+
with os.fdopen(fd, 'w') as f:
|
136 |
+
f.write(code)
|
137 |
+
|
138 |
+
st.session_state.app_path = path
|
139 |
+
|
140 |
+
# Run the app as a subprocess
|
141 |
+
try:
|
142 |
+
process = subprocess.Popen([sys.executable, path], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
143 |
+
st.session_state.process = process
|
144 |
+
st.session_state.app_port = port
|
145 |
+
|
146 |
+
# Wait a bit for the app to start
|
147 |
+
time.sleep(3)
|
148 |
+
|
149 |
+
# Check if process is still running
|
150 |
+
if process.poll() is not None:
|
151 |
+
stdout, stderr = process.communicate()
|
152 |
+
return False, f"Failed to start app: {stderr.decode('utf-8')}"
|
153 |
+
|
154 |
+
return True, None
|
155 |
+
|
156 |
+
except Exception as e:
|
157 |
+
return False, f"Error starting app: {str(e)}"
|
158 |
+
|
159 |
+
# Predefined Gradio app templates
|
160 |
+
TEMPLATES = {
|
161 |
+
"hello_world": """
|
162 |
+
import gradio as gr
|
163 |
|
|
|
164 |
def greet(name):
|
165 |
return f"Hello, {name}!"
|
166 |
|
167 |
+
demo = gr.Interface(
|
168 |
+
fn=greet,
|
169 |
+
inputs=gr.Textbox(label="Name"),
|
170 |
+
outputs=gr.Textbox(label="Greeting"),
|
171 |
+
title="Hello World App",
|
172 |
+
flagging_callback=None
|
173 |
+
)
|
174 |
+
|
175 |
+
demo.launch(server_name="0.0.0.0", server_port=PORT)
|
176 |
+
""",
|
177 |
+
|
178 |
+
"calculator": """
|
179 |
+
import gradio as gr
|
180 |
+
|
181 |
+
def calculate(num1, num2, operation):
|
182 |
+
if operation == "Add":
|
183 |
+
return num1 + num2
|
184 |
+
elif operation == "Subtract":
|
185 |
+
return num1 - num2
|
186 |
+
elif operation == "Multiply":
|
187 |
+
return num1 * num2
|
188 |
+
elif operation == "Divide":
|
189 |
if num2 == 0:
|
190 |
return "Error: Division by zero"
|
191 |
+
return num1 / num2
|
192 |
+
|
193 |
+
demo = gr.Interface(
|
194 |
+
fn=calculate,
|
195 |
+
inputs=[
|
196 |
+
gr.Number(label="First Number"),
|
197 |
+
gr.Number(label="Second Number"),
|
198 |
+
gr.Radio(["Add", "Subtract", "Multiply", "Divide"], label="Operation")
|
199 |
+
],
|
200 |
+
outputs=gr.Textbox(label="Result"),
|
201 |
+
title="Simple Calculator",
|
202 |
+
flagging_callback=None
|
203 |
+
)
|
204 |
+
|
205 |
+
demo.launch(server_name="0.0.0.0", server_port=PORT)
|
206 |
+
""",
|
207 |
+
|
208 |
+
"image_filter": """
|
209 |
+
import gradio as gr
|
210 |
+
import numpy as np
|
211 |
+
|
212 |
+
def apply_filter(image, filter_type):
|
213 |
+
if image is None:
|
214 |
+
return None
|
215 |
+
|
216 |
+
if filter_type == "Grayscale":
|
217 |
+
return np.mean(image, axis=2).astype(np.uint8)
|
218 |
+
elif filter_type == "Invert":
|
219 |
+
return 255 - image
|
220 |
+
elif filter_type == "Sepia":
|
221 |
+
sepia = np.array([[0.393, 0.769, 0.189],
|
222 |
+
[0.349, 0.686, 0.168],
|
223 |
+
[0.272, 0.534, 0.131]])
|
224 |
+
sepia_img = image.dot(sepia.T)
|
225 |
+
sepia_img[sepia_img > 255] = 255
|
226 |
+
return sepia_img.astype(np.uint8)
|
227 |
+
return image
|
228 |
+
|
229 |
+
demo = gr.Interface(
|
230 |
+
fn=apply_filter,
|
231 |
+
inputs=[
|
232 |
+
gr.Image(type="numpy"),
|
233 |
+
gr.Radio(["Grayscale", "Invert", "Sepia"], label="Filter")
|
234 |
+
],
|
235 |
+
outputs=gr.Image(type="numpy"),
|
236 |
+
title="Image Filter App",
|
237 |
+
flagging_callback=None
|
238 |
+
)
|
239 |
+
|
240 |
+
demo.launch(server_name="0.0.0.0", server_port=PORT)
|
241 |
+
""",
|
242 |
+
|
243 |
+
"text_analysis": """
|
244 |
+
import gradio as gr
|
245 |
|
|
|
246 |
def analyze_text(text):
|
247 |
if not text:
|
248 |
return "Please enter some text"
|
249 |
|
250 |
+
char_count = len(text)
|
251 |
+
word_count = len(text.split())
|
252 |
+
line_count = len(text.splitlines())
|
253 |
|
254 |
+
return f"Characters: {char_count}\\nWords: {word_count}\\nLines: {line_count}"
|
255 |
+
|
256 |
+
demo = gr.Interface(
|
257 |
+
fn=analyze_text,
|
258 |
+
inputs=gr.Textbox(label="Enter Text", lines=5),
|
259 |
+
outputs=gr.Textbox(label="Analysis"),
|
260 |
+
title="Text Analysis Tool",
|
261 |
+
flagging_callback=None
|
262 |
+
)
|
263 |
+
|
264 |
+
demo.launch(server_name="0.0.0.0", server_port=PORT)
|
265 |
+
"""
|
266 |
+
}
|
267 |
|
268 |
+
# Streamlit UI
|
269 |
+
st.title("🤖 Gradio App Generator")
|
270 |
+
|
271 |
+
tab1, tab2 = st.tabs(["Built-in Templates", "Custom Generator"])
|
272 |
+
|
273 |
+
# Built-in templates tab
|
274 |
+
with tab1:
|
275 |
+
st.header("Generate from Templates")
|
276 |
|
277 |
+
template_choice = st.selectbox(
|
278 |
+
"Select a template",
|
279 |
+
["hello_world", "calculator", "image_filter", "text_analysis"],
|
280 |
+
format_func=lambda x: {
|
281 |
+
"hello_world": "Hello World",
|
282 |
+
"calculator": "Simple Calculator",
|
283 |
+
"image_filter": "Image Filter",
|
284 |
+
"text_analysis": "Text Analysis"
|
285 |
+
}[x]
|
286 |
+
)
|
287 |
|
288 |
+
if st.button("Generate from Template"):
|
289 |
+
code = TEMPLATES[template_choice]
|
290 |
+
success, error = run_gradio_app(code)
|
|
|
291 |
|
292 |
+
if success:
|
293 |
+
st.success("App started successfully!")
|
294 |
+
else:
|
295 |
+
st.error(f"Failed to start app: {error}")
|
|
|
296 |
|
297 |
+
st.code(code, language="python")
|
298 |
+
|
299 |
+
# Custom generator tab
|
300 |
+
with tab2:
|
301 |
+
st.header("Generate Custom App")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
302 |
|
303 |
+
api_key = st.text_input("OpenAI API Key", type="password", help="Your OpenAI API key")
|
304 |
+
app_description = st.text_area("Describe the app you want", height=100)
|
|
|
305 |
|
306 |
+
if st.button("Generate Custom App"):
|
307 |
+
if not api_key or len(api_key) < 20:
|
308 |
+
st.error("Please enter a valid OpenAI API key")
|
309 |
+
elif not app_description:
|
310 |
+
st.error("Please enter a description for your app")
|
311 |
+
else:
|
312 |
+
with st.spinner("Generating app..."):
|
313 |
+
code, error = get_openai_code(api_key, app_description)
|
314 |
+
|
315 |
+
if error:
|
316 |
+
st.error(f"Error generating code: {error}")
|
317 |
+
else:
|
318 |
+
success, run_error = run_gradio_app(code)
|
319 |
+
|
320 |
+
if success:
|
321 |
+
st.success("App started successfully!")
|
322 |
+
else:
|
323 |
+
st.error(f"Failed to start app: {run_error}")
|
324 |
+
|
325 |
+
st.code(code, language="python")
|
326 |
+
|
327 |
+
# Display the currently running app
|
328 |
+
st.header("Running App")
|
329 |
|
330 |
+
if st.session_state.app_port:
|
331 |
+
# Create an iframe to display the app
|
332 |
+
st.components.v1.iframe(
|
333 |
+
src=f"http://localhost:{st.session_state.app_port}",
|
334 |
+
height=600,
|
335 |
+
scrolling=True
|
336 |
+
)
|
337 |
+
|
338 |
+
if st.button("Stop App"):
|
339 |
+
if stop_running_app():
|
340 |
+
st.success("App stopped successfully")
|
341 |
+
st.experimental_rerun()
|
342 |
+
else:
|
343 |
+
st.info("No app is currently running. Generate an app first.")
|