Spaces:
Running
Running
""" | |
FILM-based Video Frame Interpolation | |
This script uses the FILM (Frame Interpolation for Large Motion) model to generate | |
smooth transitions between keyframes, creating a high-quality interpolated video. | |
It takes a series of PNG images as input and produces an MP4 video as output. | |
The script performs the following main steps: | |
1. Loads keyframes from a specified input folder | |
2. Preprocesses the images | |
3. Applies recursive frame interpolation using the FILM model | |
4. Generates a video from the interpolated frames | |
5. Saves the output video with a unique timestamp | |
Usage: | |
Set the 'input_folder' to the directory containing your PNG keyframes | |
Set the 'output_folder' to the desired location for the generated video | |
Adjust 'fps' and 'num_recursions' parameters as needed | |
""" | |
import os | |
import tensorflow as tf | |
import cv2 | |
import numpy as np | |
from glob import glob | |
from datetime import datetime | |
import time | |
import sys | |
def load_film_model(): | |
"""Loads the FILM model only when called explicitly.""" | |
print("Loading FILM model...") | |
import tensorflow_hub as hub | |
model = hub.load('FILM_model') | |
print("FILM model loaded successfully.") | |
return model | |
def preprocess_image(image_path): | |
"""Load and preprocess an image for the FILM model.""" | |
img = tf.io.read_file(image_path) | |
img = tf.image.decode_png(img, channels=3) # remove alpha transparency | |
img = tf.image.convert_image_dtype(img, tf.float32) | |
return img | |
class Interpolator: | |
"""Wrapper class for the FILM model to perform frame interpolation.""" | |
def __init__(self, model, align=64): | |
self._model = model | |
self._align = align | |
def __call__(self, x0, x1, dt): | |
"""Interpolate between two frames at a given time step.""" | |
inputs = {'x0': x0, 'x1': x1, 'time': dt[..., np.newaxis]} # Prepare input- 2 frames and timestamp | |
result = self._model(inputs, training=False) # FILM call for interpolated frame | |
return result['image'].numpy() | |
def _recursive_generator(frame1, frame2, num_recursions, interpolator): | |
"""Recursively generate interpolated frames between two input frames.""" | |
if num_recursions == 0: | |
yield frame1 # exit condition | |
else: | |
time = np.full(shape=(1,), fill_value=0.5, dtype=np.float32) | |
mid_frame = interpolator( | |
np.expand_dims(frame1, axis=0), np.expand_dims(frame2, axis=0), time)[0] | |
yield from _recursive_generator(frame1, mid_frame, num_recursions - 1, interpolator) # 1st half | |
yield from _recursive_generator(mid_frame, frame2, num_recursions - 1, interpolator) # 2nd half | |
def interpolate_recursively(frames, num_recursions, interpolator): | |
"""Apply recursive interpolation to a list of input frames.""" | |
n = len(frames) | |
for i in range(1, n): | |
yield from _recursive_generator(frames[i - 1], frames[i], num_recursions, interpolator) | |
yield frames[-1] | |
def process_keyframes(input_folder, output_folder, fps=30, num_recursions=3): | |
"""Process keyframes to create an interpolated video, using functions above""" | |
# Check if input folder exists | |
if not os.path.exists(input_folder): | |
print(f"Error: Input folder '{input_folder}' does not exist.") | |
return False | |
# Check if input folder contains PNG files | |
keyframes = sorted(glob(os.path.join(input_folder, '*.png'))) | |
if not keyframes: | |
print(f"Error: No PNG files found in '{input_folder}'.") | |
return False | |
# Create output folder if it doesn't exist | |
if not os.path.exists(output_folder): | |
print(f"Creating output folder: '{output_folder}'") | |
os.makedirs(output_folder) | |
# Only load the FILM model when needed | |
model = load_film_model() | |
frames = [preprocess_image(frame).numpy() for frame in keyframes] | |
interpolator = Interpolator(model) | |
interpolated_frames = list(interpolate_recursively(frames, num_recursions, interpolator)) | |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") # For unique output.. | |
output_video = os.path.join(output_folder, f'output_video_{timestamp}.mp4') | |
# Set up for fusing into a morphing video | |
first_frame = cv2.imread(keyframes[0]) | |
height, width, _ = first_frame.shape | |
fourcc = cv2.VideoWriter_fourcc(*'mp4v') | |
out = cv2.VideoWriter(output_video, fourcc, fps, (width, height)) | |
for frame in interpolated_frames: | |
frame_bgr = cv2.cvtColor((frame * 255).astype(np.uint8), cv2.COLOR_RGB2BGR) | |
out.write(frame_bgr) # writes | |
out.release() | |
print(f'Video created with {len(interpolated_frames)} frames: {output_video}') | |
return True | |
# Main execution | |
if __name__ == "__main__": | |
# Usage | |
input_folder = 'results/Trump_Biden_New' | |
output_folder = 'FILM_Results' | |
print(f"Starting FILM video interpolation process...") | |
print(f"Input folder: {input_folder}") | |
print(f"Output folder: {output_folder}") | |
start_time = time.time() | |
success = process_keyframes(input_folder, output_folder, fps=30, num_recursions=3) | |
end_time = time.time() | |
if success: | |
total_execution_time = end_time - start_time | |
print(f'Total script execution time: {total_execution_time:.2f} seconds') | |
else: | |
print("Interpolation process failed. Please check the error messages above.") | |
sys.exit(1) |