nam194's picture
Update app.py
bafde03
raw
history blame
4.29 kB
import os
import streamlit as st
from langchain.llms import HuggingFaceHub
from models import return_sum_models
class LLM_Langchain():
def __init__(self):
st.warning("Warning: input function needs cleaning and may take long to be processed")
st.header('🦜 Code summarization with CodeT5-small')
st.warning("I do sample subsets of CodeXGLUE to finetune !")
self.API_KEY = os.environ["API_KEY"]
model_parent = st.sidebar.selectbox(
label = "Choose Language",
options = ["python", "java", "javascript", "php", "ruby"],
help="Choose languages",
)
if model_parent is None:
model_name_visibility = True
else:
model_name_visibility = False
model_name = return_sum_models(model_parent)
self.checkpoint = st.sidebar.selectbox(
label = "Choose Model (nam194/... is my model)",
options = [model_name, "Salesforce/codet5-base-multi-sum", f"Salesforce/codet5-base-codexglue-sum-{model_parent}"],
help="Model used to predict",
disabled=model_name_visibility
)
self.max_new_tokens = st.sidebar.slider(
label="Token Length",
min_value=32,
max_value=1024,
step=32,
value=120,
help="Set the max tokens to get accurate results"
)
self.num_beams = st.sidebar.slider(
label="num beams",
min_value=1,
max_value=10,
step=1,
value=4,
help="Set num beam"
)
self.top_k = st.sidebar.slider(
label="top k",
min_value=1,
max_value=50,
step=1,
value=30,
help="Set the top_k"
)
self.top_p = st.sidebar.slider(
label="top p",
min_value=0.1,
max_value=1.0,
step=0.05,
value=0.95,
help="Set the top_p"
)
self.model_kwargs = {
"max_new_tokens": self.max_new_tokens,
"top_k": self.top_k,
"top_p": self.top_p,
"num_beams": self.num_beams
}
os.environ['HUGGINGFACEHUB_API_TOKEN'] = self.API_KEY
def generate_response(self, input_text):
llm = HuggingFaceHub(
repo_id = self.checkpoint,
model_kwargs = self.model_kwargs
)
return llm(input_text)
def form_data(self):
# with st.form('my_form'):
try:
if not self.API_KEY.startswith('hf_'):
st.warning('Please enter your API key!', icon='⚠')
if "messages" not in st.session_state:
st.session_state.messages = []
st.write(f"You are using {self.checkpoint} model")
for message in st.session_state.messages:
with st.chat_message(message.get('role')):
st.write(message.get("content"))
text = st.chat_input(disabled=False)
if text:
st.session_state.messages.append(
{
"role":"user",
"content": text
}
)
with st.chat_message("user"):
st.write(text)
if text.lower() == "clear":
del st.session_state.messages
return
result = self.generate_response(text)
st.session_state.messages.append(
{
"role": "assistant",
"content": result
}
)
with st.chat_message('assistant'):
st.markdown(result)
except Exception as e:
st.error(e, icon="🚨")
model = LLM_Langchain()
model.form_data()