File size: 6,414 Bytes
8824528 1cafba1 8824528 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
from imports import *
from utils import normalize, replace_all
class NerFeatures(object):
def __init__(self, input_ids, token_type_ids, attention_mask, valid_ids, labels, label_masks):
self.input_ids = torch.as_tensor(input_ids, dtype=torch.long)
self.labels = torch.as_tensor(labels, dtype=torch.long)
self.token_type_ids = torch.as_tensor(token_type_ids, dtype=torch.long)
self.attention_mask = torch.as_tensor(attention_mask, dtype=torch.long)
self.valid_ids = torch.as_tensor(valid_ids, dtype=torch.long)
self.label_masks = torch.as_tensor(label_masks, dtype=torch.long)
class NerOutput(OrderedDict):
loss: Optional[torch.FloatTensor] = torch.FloatTensor([0.0])
tags: Optional[List[int]] = []
cls_metrics: Optional[List[int]] = []
def __getitem__(self, k):
if isinstance(k, str):
inner_dict = {k: v for (k, v) in self.items()}
return inner_dict[k]
else:
return self.to_tuple()[k]
def __setattr__(self, name, value):
if name in self.keys() and value is not None:
super().__setitem__(name, value)
super().__setattr__(name, value)
def __setitem__(self, key, value):
super().__setitem__(key, value)
super().__setattr__(key, value)
def to_tuple(self) -> Tuple[Any]:
return tuple(self[k] for k in self.keys())
class NerDataset(Dataset):
def __init__(self, features: List[NerFeatures], device: str = 'cpu'):
self.examples = features
self.device = device
def __len__(self):
return len(self.examples)
def __getitem__(self, index):
return {key: val.to(self.device) for key, val in self.examples[index].__dict__.items()}
# return sentiment dataset at tensor type
def sentiment_dataset(path_folder, train_file_name, test_file_name):
def extract(path):
data = pd.read_csv(os.path.join(path), encoding="utf-8").dropna()
label = [np.argmax(i) for i in data[["negative", "positive", "neutral"]].values.astype(float)]
# text = data["text"].apply(lambda x: x.replace("_"," "))
text = data["text"]#.apply(lambda x: normalize(x))
return text, label
x_train, y_train = extract(os.path.join(path_folder, train_file_name))
x_test, y_test = extract(os.path.join(path_folder, test_file_name))
train_set = datasets.Dataset.from_pandas(pd.DataFrame(data=zip(x_train,y_train), columns=['text','label']))
test_set = datasets.Dataset.from_pandas(pd.DataFrame(data=zip(x_test,y_test), columns=['text','label']))
custom_dt = datasets.DatasetDict({'train': train_set, 'test': test_set})
tokenizer = AutoTokenizer.from_pretrained('wonrax/phobert-base-vietnamese-sentiment', use_fast=False)
def tokenize(batch):
return tokenizer(list(batch['text']), padding=True, truncation=True)
custom_tokenized = custom_dt.map(tokenize, batched=True, batch_size=None)
custom_tokenized.set_format('torch',columns=["input_ids", 'token_type_ids', "attention_mask", "label"])
return custom_tokenized
# get feature for ner task
def feature_for_phobert(data, tokenizer, max_seq_len: int=256, use_crf: bool = False) -> List[NerFeatures]:
features = []
tokens = []
tag_ids = []
idx2tag = {0: 'B-chỗ để xe', 1: 'B-con người', 2: 'B-công việc', 3: 'B-cơ sở vật chất', 4: 'B-dự án', 5: 'B-lương', 6: 'B-môi trường làm việc', 7: 'B-ot/thời gian', 8: 'B-văn phòng', 9: 'B-đãi ngộ', 10: 'I-chỗ để xe', 11: 'I-con người', 12: 'I-công việc', 13: 'I-cơ sở vật chất', 14: 'I-dự án', 15: 'I-lương', 16: 'I-môi trường làm việc', 17: 'I-ot/thời gian', 18: 'I-văn phòng', 19: 'I-đãi ngộ', 20: 'O'}
tag2idx = {v: k for k, v in idx2tag.items()}
for id, tokens in enumerate(data):
if tokens == []:
continue
tag_ids = [tag2idx[i[1]] for i in tokens]
seq_len = len(tokens)
sentence = ' '.join([tok[0] for tok in tokens])
encoding = tokenizer(sentence, padding='max_length', truncation=True, max_length=max_seq_len)
subwords = tokenizer.tokenize(sentence)
valid_ids = np.zeros(len(encoding.input_ids), dtype=int)
label_marks = np.zeros(len(encoding.input_ids), dtype=int)
valid_labels = np.ones(len(encoding.input_ids), dtype=int) * -100
i = 1
for idx, subword in enumerate(subwords): # subwords[:max_seq_len-2]
if idx != 0 and subwords[idx-1].endswith("@@"):
continue
if use_crf:
valid_ids[i-1] = idx + 1
else:
valid_ids[idx+1] = 1
valid_labels[idx+1] = tag_ids[i-1]
i += 1
if max_seq_len >= seq_len:
label_padding_size = (max_seq_len - seq_len)
label_marks[:seq_len] = [1] * seq_len
tag_ids.extend([0] * label_padding_size)
else:
tag_ids = tag_ids[:max_seq_len]
label_marks[:-2] = [1] * (max_seq_len - 2)
tag_ids[-2:] = [0] * 2
if use_crf and label_marks[0] == 0:
try:
raise f"{sentence} - {tag_ids} have mark == 0 at index 0!"
except:
print(f"{sentence} - {tag_ids} have mark == 0 at index 0!")
break
items = {key: val for key, val in encoding.items()}
items['labels'] = tag_ids if use_crf else valid_labels
items['valid_ids'] = valid_ids
items['label_masks'] = label_marks if use_crf else valid_ids
features.append(NerFeatures(**items))
for k, v in items.items():
assert len(v) == max_seq_len, f"Expected length of {k} is {max_seq_len} but got {len(v)}"
tokens = []
tag_ids = []
return features
# create ner dataset
def topic_dataset(path_folder, file_name, tokenizer, use_crf=True):
data = read_csv_to_ner_data(os.path.join(path_folder, file_name))
train_data, test_data = train_test_split(data, test_size=0.2, random_state=42)
# token2idx, idx2token = get_dict_map(train_data+test_data, 'token')
#tag2idx, idx2tag = get_dict_map(data, 'tag')
train_set = NerDataset(feature_for_phobert(train_data, tokenizer=tokenizer, use_crf=use_crf))
test_set = NerDataset(feature_for_phobert(test_data, tokenizer=tokenizer, use_crf=use_crf))
return train_set, test_set
|