|
import numpy as np |
|
import gradio as gr |
|
from imports import * |
|
from huggingface_hub import login |
|
login(token="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") |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
dict_ = { |
|
0: "negative", |
|
1: "positive", |
|
2: "neutral"} |
|
tokenizer_sent = AutoTokenizer.from_pretrained("nam194/sentiment", use_fast=False) |
|
model_sent = AutoModelForSequenceClassification.from_pretrained("nam194/sentiment", num_labels=3, use_auth_token=True).to(device) |
|
def cvt2cls(data): |
|
data = list(set(data)) |
|
try: |
|
data.remove(20) |
|
except: |
|
pass |
|
for i, num in enumerate(data): |
|
if num == 20: |
|
continue |
|
if num>=10: |
|
data[i] -= 10 |
|
return data |
|
ner_tags = {0: 'B-chỗ để xe', 1: 'B-con người', 2: 'B-công việc', 3: 'B-cơ sở vật chất', 4: 'B-dự án', 5: 'B-lương', 6: 'B-môi trường làm việc', 7: 'B-ot/thời gian', 8: 'B-văn phòng', 9: 'B-đãi ngộ', 10: 'I-chỗ để xe', 11: 'I-con người', 12: 'I-công việc', 13: 'I-cơ sở vật chất', 14: 'I-dự án', 15: 'I-lương', 16: 'I-môi trường làm việc', 17: 'I-ot/thời gian', 18: 'I-văn phòng', 19: 'I-đãi ngộ', 20: 'O'} |
|
topic_tags = {0: 'chỗ để xe', 1: 'con người', 2: 'công việc', 3: 'cơ sở vật chất', 4: 'dự án', 5: 'lương', 6: 'môi trường làm việc', 7: 'ot/thời gian', 8: 'văn phòng', 9: 'đãi ngộ'} |
|
config = RobertaConfig.from_pretrained("nam194/ner", num_labels=21) |
|
tokenizer_topic = AutoTokenizer.from_pretrained("nam194/ner", use_fast=False) |
|
model_topic = PhoBertLstmCrf.from_pretrained("nam194/ner", config=config, from_tf=False).to(device) |
|
model_topic.resize_token_embeddings(len(tokenizer_topic)) |
|
|
|
|
|
def sentiment(sent: str): |
|
sent_ = normalize(text=sent) |
|
input_sent = torch.tensor([tokenizer_sent.encode(sent_)]).to(device) |
|
with torch.no_grad(): |
|
out_sent = model_sent(input_sent) |
|
logits_sent = out_sent.logits.softmax(dim=-1).tolist()[0] |
|
pred_sent = dict_[np.argmax(logits_sent)] |
|
|
|
sent = replace_all(text=sent) |
|
sent_segment = sent.split(".") |
|
for i, s in enumerate(sent_segment): |
|
s = s.strip() |
|
sent_segment[i] = underthesea.word_tokenize(s, format="text").split() |
|
dump = [[i, 'O'] for s in sent_segment for i in s] |
|
dump_set = NerDataset(feature_for_phobert([dump], tokenizer=tokenizer_topic, use_crf=True)) |
|
dump_iter = DataLoader(dump_set, batch_size=1) |
|
with torch.no_grad(): |
|
for idx, batch in enumerate(dump_iter): |
|
batch = { k:v.to(device) for k, v in batch.items() } |
|
outputs = model_topic(**batch) |
|
pred_topic = list(set([topic_tags[i] for i in cvt2cls(outputs["tags"][0])])) |
|
return str({"sentiment": pred_sent, "topic": pred_topic}) |
|
|
|
|
|
def flip_image(x): |
|
return np.fliplr(x) |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("Demo projects Review Company and Resume parser phase 1.") |
|
with gr.Tab("Review Company"): |
|
text_input = gr.Textbox(label="Input sentence:", placeholder="input here...") |
|
text_output = gr.Textbox(label="Result:") |
|
text_button = gr.Button("Predict") |
|
with gr.Tab("Extract infomation from resume"): |
|
with gr.Row(): |
|
image_input = gr.Image() |
|
image_output = gr.Image() |
|
image_button = gr.Button("Predict") |
|
|
|
|
|
|
|
|
|
text_button.click(sentiment, inputs=text_input, outputs=text_output) |
|
image_button.click(flip_image, inputs=image_input, outputs=image_output) |
|
|
|
demo.launch() |