nam194 commited on
Commit
4e55f8f
1 Parent(s): 66f90cb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +60 -4
app.py CHANGED
@@ -1,9 +1,65 @@
1
  import numpy as np
2
  import gradio as gr
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
 
4
 
5
- def flip_text(x):
6
- return x[::-1]
7
 
8
 
9
  def flip_image(x):
@@ -11,8 +67,8 @@ def flip_image(x):
11
 
12
 
13
  with gr.Blocks() as demo:
14
- gr.Markdown("Flip text or image files using this demo.")
15
- with gr.Tab("Flip Text"):
16
  text_input = gr.Textbox()
17
  text_output = gr.Textbox()
18
  text_button = gr.Button("Flip")
 
1
  import numpy as np
2
  import gradio as gr
3
+ from huggingface_hub import login
4
+ login(token="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")
5
+
6
+ dict_ = {
7
+ 0: "negative",
8
+ 1: "positive",
9
+ 2: "neutral"}
10
+ path_sent = "/content/drive/MyDrive/company-review-analysis-model/sentiment_checkpoint"
11
+ tokenizer_sent = AutoTokenizer.from_pretrained(path_sent, use_fast=False)
12
+ model_sent = AutoModelForSequenceClassification.from_pretrained(path_sent, num_labels=3).to(device)
13
+ def cvt2cls(data):
14
+ data = list(set(data))
15
+ try:
16
+ data.remove(20)
17
+ except:
18
+ pass
19
+ for i, num in enumerate(data):
20
+ if num == 20:
21
+ continue
22
+ if num>=10:
23
+ data[i] -= 10
24
+ return data
25
+ ner_tags = {0: 'B-chỗ để xe', 1: 'B-con người', 2: 'B-công việc', 3: 'B-cơ sở vật chất', 4: 'B-dự án', 5: 'B-lương', 6: 'B-môi trường làm việc', 7: 'B-ot/thời gian', 8: 'B-văn phòng', 9: 'B-đãi ngộ', 10: 'I-chỗ để xe', 11: 'I-con người', 12: 'I-công việc', 13: 'I-cơ sở vật chất', 14: 'I-dự án', 15: 'I-lương', 16: 'I-môi trường làm việc', 17: 'I-ot/thời gian', 18: 'I-văn phòng', 19: 'I-đãi ngộ', 20: 'O'}
26
+ topic_tags = {0: 'chỗ để xe', 1: 'con người', 2: 'công việc', 3: 'cơ sở vật chất', 4: 'dự án', 5: 'lương', 6: 'môi trường làm việc', 7: 'ot/thời gian', 8: 'văn phòng', 9: 'đãi ngộ'}
27
+ path_topic = "/content/drive/MyDrive/company-review-analysis-model/topic_checkpoint"
28
+ num_labels = 20
29
+ config = RobertaConfig.from_pretrained(path_topic, num_labels=num_labels)
30
+ tokenizer_topic = AutoTokenizer.from_pretrained(path_topic, use_fast=False)
31
+ model_topic = PhoBertLstmCrf.from_pretrained(path_topic, config=config, from_tf=False).to(device)
32
+ model_topic.resize_token_embeddings(len(tokenizer_topic))
33
+
34
+
35
+ def review_company(sent: str):
36
+ try:
37
+ sent = normalize(text=sent) # segment input sentence, maybe raise ConnectionError: HTTPConnectionPool())
38
+ except:
39
+ pass
40
+ input_sent = torch.tensor([tokenizer_sent.encode(sent)]).to(device)
41
+ with torch.no_grad():
42
+ out_sent = model_sent(input_sent)
43
+ logits_sent = out_sent.logits.softmax(dim=-1).tolist()[0]
44
+ pred_sent = dict_[np.argmax(logits_sent)]
45
+
46
+ try:
47
+ sent = replace_all(text=sent) # segment input sentence, maybe raise ConnectionError: HTTPConnectionPool())
48
+ except:
49
+ pass
50
+ sent_segment = rdrsegmenter.tokenize(sent)
51
+ dump = [[i, 'O'] for s in sent_segment for i in s]
52
+ dump_set = NerDataset(feature_for_phobert([dump], tokenizer=tokenizer_topic, use_crf=True))
53
+ dump_iter = DataLoader(dump_set, batch_size=1)
54
+ with torch.no_grad():
55
+ for idx, batch in enumerate(dump_iter):
56
+ batch = { k:v.to(device) for k, v in batch.items() }
57
+ outputs = model_topic(**batch)
58
+ return list(set([topic_tags[i] for i in cvt2cls(outputs["tags"][0])]))
59
+
60
+ return pred_sent
61
 
62
 
 
 
63
 
64
 
65
  def flip_image(x):
 
67
 
68
 
69
  with gr.Blocks() as demo:
70
+ gr.Markdown("Demo projects Review Company and Resume parser phase 1.")
71
+ with gr.Tab("Review Company"):
72
  text_input = gr.Textbox()
73
  text_output = gr.Textbox()
74
  text_button = gr.Button("Flip")