Update app.py
Browse files![uncle_murphy.jpg](https://cdn-uploads.huggingface.co/production/uploads/6256774f78cab737328bd3b7/U1y_cfJRWHW81fxT5otB7.jpeg)
app.py
CHANGED
@@ -33,7 +33,9 @@ model_topic.resize_token_embeddings(len(tokenizer_topic))
|
|
33 |
|
34 |
|
35 |
def sentiment(sent: str):
|
36 |
-
print("\n
|
|
|
|
|
37 |
sent_ = normalize(text=sent)
|
38 |
input_sent = torch.tensor([tokenizer_sent.encode(sent_)]).to(device)
|
39 |
with torch.no_grad():
|
@@ -71,7 +73,9 @@ key_list = ["person_name","dob_value","gender_value","phonenumber_value","email_
|
|
71 |
"designation_value","degree_value","skill_value"]
|
72 |
label2id = {v: k for k, v in id2label.items()}
|
73 |
def pred_resume(pdf_path) -> dict:
|
74 |
-
print("\n
|
|
|
|
|
75 |
global key_list, device
|
76 |
result = {}
|
77 |
for i in key_list:
|
|
|
33 |
|
34 |
|
35 |
def sentiment(sent: str):
|
36 |
+
print("\n--------------------------------------------------------------------------------------------------------------------------\n")
|
37 |
+
print("New review inference at: ", datetime.utcnow())
|
38 |
+
print("\n--------------------------------------------------------------------------------------------------------------------------\n")
|
39 |
sent_ = normalize(text=sent)
|
40 |
input_sent = torch.tensor([tokenizer_sent.encode(sent_)]).to(device)
|
41 |
with torch.no_grad():
|
|
|
73 |
"designation_value","degree_value","skill_value"]
|
74 |
label2id = {v: k for k, v in id2label.items()}
|
75 |
def pred_resume(pdf_path) -> dict:
|
76 |
+
print("\n--------------------------------------------------------------------------------------------------------------------------\n")
|
77 |
+
print("New resume inference at: ", datetime.utcnow())
|
78 |
+
print("\n--------------------------------------------------------------------------------------------------------------------------\n")
|
79 |
global key_list, device
|
80 |
result = {}
|
81 |
for i in key_list:
|