namannn commited on
Commit
4bc3aed
·
verified ·
1 Parent(s): 2a282de

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -37
app.py CHANGED
@@ -1,42 +1,16 @@
1
  import streamlit as st
2
- from transformers import AutoTokenizer, AutoModelForCausalLM
3
 
4
- # Load model and tokenizer
5
- tokenizer = AutoTokenizer.from_pretrained("namannn/llama2-13b-hyperbolic-cluster-pruned")
6
- model = AutoModelForCausalLM.from_pretrained("namannn/llama2-13b-hyperbolic-cluster-pruned")
7
 
8
- # Streamlit UI components
9
- st.title("Text Generation with LLaMa2-13b Hyperbolic Model")
10
- st.write("Enter a prompt below and the model will generate text.")
11
 
12
- # User input for prompt
13
- prompt = st.text_area("Input Prompt", "Once upon a time, in a land far away")
14
-
15
- # Slider for controlling the length of the output
16
- max_length = st.slider("Max Length of Generated Text", min_value=50, max_value=200, value=100)
17
-
18
- # Button to trigger text generation
19
- if st.button("Generate Text"):
20
- if prompt:
21
- # Encode the prompt text
22
- inputs = tokenizer(prompt, return_tensors="pt")
23
-
24
- # Generate text with the model
25
- outputs = model.generate(
26
- inputs["input_ids"],
27
- max_length=max_length,
28
- num_return_sequences=1,
29
- no_repeat_ngram_size=2, # You can tune this for diversity
30
- do_sample=True, # Use sampling for diverse generation
31
- top_k=50, # Top-k sampling for diversity
32
- top_p=0.95, # Top-p (nucleus) sampling
33
- temperature=0.7 # Control randomness (lower = more deterministic)
34
- )
35
-
36
- # Decode and display generated text
37
- generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
38
- st.subheader("Generated Text:")
39
- st.write(generated_text)
40
- else:
41
- st.warning("Please enter a prompt to generate text.")
42
 
 
 
 
1
  import streamlit as st
2
+ from transformers import pipeline
3
 
4
+ sentiment_pipeline = pipeline("sentiment-analysis")
 
 
5
 
6
+ st.title("Sentiment Analysis with HuggingFace Spaces")
7
+ st.write("Enter a sentence to analyze its sentiment:")
 
8
 
9
+ user_input = st.text_input("")
10
+ if user_input:
11
+ result = sentiment_pipeline(user_input)
12
+ sentiment = result[0]["label"]
13
+ confidence = result[0]["score"]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
 
15
+ st.write(f"Sentiment: {sentiment}")
16
+ st.write(f"Confidence: {confidence:.2f}")