Naman Pundir
commited on
Commit
·
3d71508
1
Parent(s):
c9bb7a3
Update app.py
Browse files
app.py
CHANGED
@@ -1,45 +1,39 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
|
4 |
-
# Define the models and their corresponding names
|
5 |
models = {
|
6 |
-
"Model 1 (
|
7 |
-
"model_name": "
|
8 |
-
"description": "Model 1
|
9 |
},
|
10 |
-
"Model 2 (
|
11 |
-
"model_name": "
|
12 |
-
"description": "Model 2
|
13 |
},
|
14 |
}
|
15 |
|
16 |
-
# Define the Gradio interface
|
17 |
def summarize_text(input_text, selected_model):
|
18 |
-
# Get the selected model and its tokenizer
|
19 |
model_info = models[selected_model]
|
20 |
tokenizer = AutoTokenizer.from_pretrained(model_info["model_name"])
|
21 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_info["model_name"])
|
22 |
|
23 |
-
# Tokenize and generate summary
|
24 |
input_ids = tokenizer.encode(input_text, return_tensors="pt", max_length=1024, truncation=True)
|
25 |
summary_ids = model.generate(input_ids, max_length=10, min_length=1, length_penalty=1.0, num_beams=4, early_stopping=True)
|
26 |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
27 |
return summary
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
)
|
35 |
|
36 |
iface = gr.Interface(
|
37 |
fn=summarize_text,
|
38 |
inputs=[gr.inputs.Textbox(label="Input Text"), gr.inputs.Radio(list(models.keys()), label="Select Model")],
|
39 |
outputs="text",
|
40 |
-
title=
|
41 |
-
description="Choose a model for
|
42 |
-
theme=custom_theme, # Apply the custom theme
|
43 |
)
|
44 |
|
45 |
if __name__ == "__main__":
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
|
|
|
4 |
models = {
|
5 |
+
"Model 1 (facebook/bart-large-cnn)": {
|
6 |
+
"model_name": "facebook/bart-large-cnn",
|
7 |
+
"description": "Model 1",
|
8 |
},
|
9 |
+
"Model 2 (google/pegasus-multi_news)": {
|
10 |
+
"model_name": "google/pegasus-multi_news",
|
11 |
+
"description": "Model 2",
|
12 |
},
|
13 |
}
|
14 |
|
|
|
15 |
def summarize_text(input_text, selected_model):
|
|
|
16 |
model_info = models[selected_model]
|
17 |
tokenizer = AutoTokenizer.from_pretrained(model_info["model_name"])
|
18 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_info["model_name"])
|
19 |
|
|
|
20 |
input_ids = tokenizer.encode(input_text, return_tensors="pt", max_length=1024, truncation=True)
|
21 |
summary_ids = model.generate(input_ids, max_length=10, min_length=1, length_penalty=1.0, num_beams=4, early_stopping=True)
|
22 |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
23 |
return summary
|
24 |
|
25 |
+
custom_title = """
|
26 |
+
<div style="color: white; text-align: center; background-color: black; padding: 20px;">
|
27 |
+
<h1>MLE - Project (Tuning and Infra Project)1MLE - Project (Tuning and Infra Project)</h1>
|
28 |
+
</div>
|
29 |
+
"""
|
|
|
30 |
|
31 |
iface = gr.Interface(
|
32 |
fn=summarize_text,
|
33 |
inputs=[gr.inputs.Textbox(label="Input Text"), gr.inputs.Radio(list(models.keys()), label="Select Model")],
|
34 |
outputs="text",
|
35 |
+
title=custom_title,
|
36 |
+
description="Choose a model for Concept Assignation and enter the text to summarize.",
|
|
|
37 |
)
|
38 |
|
39 |
if __name__ == "__main__":
|