audio_enhance / app.py
namelessai's picture
Create app.py
b255641 verified
import gradio as gr
import torch
from audiocraft.models import MusicGen
from audiocraft.data.audio import audio_write
import numpy as np
import tempfile
import os
# Load the MusicGen model
model = MusicGen.get_pretrained('small')
model.set_generation_params(duration=30) # Set maximum duration to 30 seconds
def enhance_audio(audio_file):
# Load and process the audio file
waveform = model.compression_model.encode(audio_file)
# Apply AI-based enhancement (this is a simplified example)
enhanced_waveform = model.compression_model.decode(waveform)
# Convert to numpy array and normalize
enhanced_audio = enhanced_waveform.squeeze().cpu().numpy()
enhanced_audio = enhanced_audio / np.max(np.abs(enhanced_audio))
# Save the enhanced audio to a temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_file:
audio_write(temp_file.name, enhanced_audio, model.sample_rate, strategy="loudness", loudness_compressor=True)
output_path = temp_file.name
return output_path
# Create the Gradio interface
iface = gr.Interface(
fn=enhance_audio,
inputs=gr.Audio(type="filepath", label="Upload your audio file"),
outputs=gr.Audio(type="filepath", label="Enhanced Audio"),
title="AI Music Mastering and Enhancement",
description="Upload an audio file to apply AI-based mastering and enhancement.",
)
# Launch the app
iface.launch()