File size: 16,402 Bytes
ea99abb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
import gradio as gr
from typing import Dict, List, Any
import pandas as pd
import json
import re
import html as html_lib
from tasks.ner import named_entity_recognition
from utils.ner_helpers import NER_ENTITY_TYPES, DEFAULT_SELECTED_ENTITIES, is_llm_model
# The ner_ui function and related logic moved from app.py
def ner_ui():
# Default entity types for the multi-select
DEFAULT_ENTITY_TYPES = list(NER_ENTITY_TYPES.keys())
def ner(text: str, model: str, entity_types: List[str]) -> Dict[str, Any]:
"""Extract named entities, automatically using LLM for supported models."""
if not text.strip():
return {"text": "", "entities": []}
try:
use_llm = is_llm_model(model)
# Call the enhanced NER function
entities = named_entity_recognition(
text=text,
model=model,
use_llm=use_llm,
entity_types=entity_types if use_llm else None
)
# Convert to the format expected by the UI
if not isinstance(entities, list):
entities = []
if not use_llm and entity_types:
entities = [e for e in entities if e.get("type", "") in entity_types or e.get("entity", "") in entity_types]
return {
"entities": [
{
"entity": e.get("type", ""),
"word": e.get("text", ""),
"start": e.get("start", 0),
"end": e.get("end", 0),
"score": e.get("confidence", 1.0),
"description": e.get("description", "")
}
for e in entities
]
}
except Exception as e:
print(f"Error in NER: {str(e)}")
return {"entities": []}
def render_ner_html(text, entities):
# COMPLETELY REVISED APPROACH: Clean inline display of entities with proper positioning
if not text.strip() or not entities:
return "<div style='text-align: center; color: #666; padding: 20px;'>No named entities found in the text.</div>"
COLORS = [
'#e3f2fd', '#e8f5e9', '#fff8e1', '#f3e5f5', '#e8eaf6', '#e0f7fa',
'#f1f8e9', '#fce4ec', '#e8f5e9', '#f5f5f5', '#fafafa', '#e1f5fe',
'#fff3e0', '#d7ccc8', '#f9fbe7', '#fbe9e7', '#ede7f6', '#e0f2f1'
]
# Clean up entities and extract necessary data
clean_entities = []
label_colors = {}
for ent in entities:
# Extract label
label = ent.get('type') or ent.get('entity')
if not label:
continue # Skip entities without label
# Extract text
entity_text = ent.get('text') or ent.get('word')
if not entity_text:
continue # Skip entities without text
# Get positions if available
start = ent.get('start', -1)
end = ent.get('end', -1)
# Verify that entity text matches the span in the original text
# This ensures positions are correct
if start >= 0 and end > start and end <= len(text):
span_text = text[start:end]
if entity_text != span_text and not text[start:end].strip().startswith(entity_text):
# Try to find the entity in the text if position doesn't match
found = False
for match in re.finditer(re.escape(entity_text), text):
if not found:
start = match.start()
end = match.end()
found = True
else:
# Try to find the entity in the text if no position information
found = False
for match in re.finditer(re.escape(entity_text), text):
if not found:
start = match.start()
end = match.end()
found = True
# Assign color based on label
if label not in label_colors:
label_colors[label] = COLORS[len(label_colors) % len(COLORS)]
clean_entities.append({
'text': entity_text,
'label': label,
'color': label_colors[label],
'start': start,
'end': end
})
# Sort entities by position (important for proper rendering)
clean_entities.sort(key=lambda x: x['start'])
# Check for overlapping entities and resolve conflicts
non_overlapping = []
if clean_entities:
non_overlapping.append(clean_entities[0])
for i in range(1, len(clean_entities)):
current = clean_entities[i]
prev = non_overlapping[-1]
# Check if current entity overlaps with previous one
if current['start'] < prev['end']:
# Skip overlapping entity to avoid confusion
continue
else:
non_overlapping.append(current)
# Generate HTML with proper inline highlighting
html = ["<div class='ner-highlight' style='line-height:1.6;padding:15px;border:1px solid #e0e0e0;border-radius:4px;background:#f9f9f9;white-space:pre-wrap;'>"]
# Process text sequentially with entity markers
last_pos = 0
for entity in non_overlapping:
start = entity['start']
end = entity['end']
# Add text before entity
if start > last_pos:
html.append(html_lib.escape(text[last_pos:start]))
# Add the entity with its label (with spacing between entity and label)
html.append(f"<span style='background:{entity['color']};border-radius:3px;padding:2px 4px;margin:0 1px;border:1px solid rgba(0,0,0,0.1);'>")
html.append(f"{html_lib.escape(entity['text'])} ")
html.append(f"<span style='font-size:0.8em;font-weight:bold;color:#555;border-radius:2px;padding:0 2px;background:rgba(255,255,255,0.7);'>{html_lib.escape(entity['label'])}</span>")
html.append("</span>")
# Update position
last_pos = end
# Add any remaining text
if last_pos < len(text):
html.append(html_lib.escape(text[last_pos:]))
html.append("</div>")
return "".join(html)
def update_ui(model_id: str) -> Dict:
"""Update the UI based on the selected model."""
use_llm = is_llm_model(model_id)
return {
entity_types_group: gr.Group(visible=use_llm)
}
with gr.Row():
with gr.Column(scale=2):
input_text = gr.Textbox(
label="Input Text",
lines=8,
placeholder="Enter text to analyze for named entities..."
)
model_dropdown = gr.Dropdown(
["gemini-2.0-flash", "gpt-4", "claude-2", "en_core_web_sm", "en_core_web_md", "en_core_web_lg"],
value="gemini-2.0-flash",
label="Model"
)
with gr.Group() as entity_types_group:
entity_types = gr.CheckboxGroup(
label="Entity Types to Extract",
choices=DEFAULT_ENTITY_TYPES,
value=DEFAULT_SELECTED_ENTITIES,
interactive=True
)
with gr.Row():
select_all_btn = gr.Button("Select All", size="sm")
clear_all_btn = gr.Button("Clear All", size="sm")
btn = gr.Button("Extract Entities", variant="primary")
# Button handlers for entity selection
def select_all_entities():
return gr.CheckboxGroup(value=DEFAULT_ENTITY_TYPES)
def clear_all_entities():
return gr.CheckboxGroup(value=[])
select_all_btn.click(
fn=select_all_entities,
outputs=[entity_types]
)
clear_all_btn.click(
fn=clear_all_entities,
outputs=[entity_types]
)
with gr.Column(scale=3):
# Output with tabs
with gr.Tabs() as output_tabs:
with gr.Tab("Tagged View", id="tagged-view-ner"):
no_results_html = gr.HTML(
"<div style='text-align: center; color: #666; padding: 20px;'>"
"Enter text and click 'Extract Entities' to get results.</div>",
visible=True
)
output_html = gr.HTML(
label="NER Highlighted",
elem_id="ner-output-html",
visible=False
)
# Add CSS for NER tags (scoped to this component)
gr.HTML("""
<style>
#ner-output-html .pos-highlight {
white-space: pre-wrap;
line-height: 1.8;
font-size: 14px;
padding: 15px;
border: 1px solid #e0e0e0;
border-radius: 4px;
background: #f9f9f9;
}
#ner-output-html .pos-token {
display: inline-block;
margin: 0 2px 4px 0;
vertical-align: top;
text-align: center;
}
#ner-output-html .token-text {
display: block;
padding: 2px 8px;
background: #f0f4f8;
border-radius: 4px 4px 0 0;
border: 1px solid #dbe4ed;
border-bottom: none;
font-size: 0.9em;
}
#ner-output-html .pos-tag {
display: block;
padding: 2px 8px;
border-radius: 0 0 4px 4px;
font-size: 0.8em;
font-family: 'Courier New', monospace;
border: 1px solid;
border-top: none;
}
/* Example color coding for common NER labels (customize as needed) */
#ner-output-html .PERSON { background-color: #e3f2fd; border-color: #bbdefb; color: #0d47a1; }
#ner-output-html .ORG { background-color: #e8f5e9; border-color: #c8e6c9; color: #1b5e20; }
#ner-output-html .GPE { background-color: #fff8e1; border-color: #ffecb3; color: #ff6f00; }
#ner-output-html .LOC { background-color: #f3e5f5; border-color: #e1bee7; color: #4a148c; }
#ner-output-html .PRODUCT { background-color: #e8eaf6; border-color: #c5cae9; color: #1a237e; }
#ner-output-html .EVENT { background-color: #e0f7fa; border-color: #b2ebf2; color: #006064; }
#ner-output-html .WORK_OF_ART { background-color: #f1f8e9; border-color: #dcedc8; color: #33691e; }
#ner-output-html .LAW { background-color: #fce4ec; border-color: #f8bbd0; color: #880e4f; }
#ner-output-html .LANGUAGE { background-color: #e8f5e9; border-color: #c8e6c9; color: #1b5e20; font-weight: bold; }
#ner-output-html .DATE { background-color: #f5f5f5; border-color: #e0e0e0; color: #424242; }
#ner-output-html .TIME { background-color: #fafafa; border-color: #f5f5f5; color: #616161; }
#ner-output-html .PERCENT { background-color: #e1f5fe; border-color: #b3e5fc; color: #01579b; font-weight: bold; }
#ner-output-html .MONEY { background-color: #f3e5f5; border-color: #e1bee7; color: #6a1b9a; }
#ner-output-html .QUANTITY { background-color: #f1f8e9; border-color: #dcedc8; color: #33691e; font-style: italic; }
#ner-output-html .ORDINAL { background-color: #fff3e0; border-color: #ffe0b2; color: #e65100; }
#ner-output-html .CARDINAL { background-color: #ede7f6; border-color: #d1c4e9; color: #4527a0; }
</style>
""")
with gr.Tab("Table View", id="table-view-ner"):
no_results_table = gr.HTML(
"<div style='text-align: center; color: #666; padding: 20px;'>"
"Enter text and click 'Extract Entities' to get results.</div>",
visible=True
)
output_table = gr.Dataframe(
label="Extracted Entities",
headers=["Type", "Text", "Confidence", "Description"],
datatype=["str", "str", "number", "str"],
interactive=False,
wrap=True,
visible=False
)
# Update the UI when the model changes
model_dropdown.change(
fn=update_ui,
inputs=[model_dropdown],
outputs=[entity_types_group]
)
def process_and_show_results(text: str, model: str, entity_types: List[str]):
"""Process NER and return both the results and UI state"""
if not text.strip():
msg = "<div style='text-align: center; color: #f44336; padding: 20px;'>Please enter some text to analyze.</div>"
return [
gr.HTML(visible=False), # output_html
gr.HTML(msg, visible=True), # no_results_html
gr.DataFrame(visible=False), # output_table
gr.HTML(msg, visible=True) # no_results_table
]
if not entity_types:
entity_types = list(NER_ENTITY_TYPES.keys())
result = ner(text, model, entity_types)
entities = result["entities"] if result and "entities" in result else []
# DataFrame for table view
if entities:
df = pd.DataFrame(entities)
if not df.empty:
df = df.rename(columns={
"entity": "Type",
"word": "Text",
"score": "Confidence",
"description": "Description"
})
display_columns = ["Type", "Text", "Confidence", "Description"]
df = df[[col for col in display_columns if col in df.columns]]
if 'start' in df.columns:
df = df.sort_values('start')
html = render_ner_html(text, entities)
return [
gr.HTML(html, visible=True), # output_html
gr.HTML(visible=False), # no_results_html
gr.DataFrame(value=df, visible=True), # output_table
gr.HTML(visible=False) # no_results_table
]
# No entities found
msg = "<div style='text-align: center; color: #666; padding: 20px;'>No named entities found in the text.</div>"
return [
gr.HTML(msg, visible=True), # output_html
gr.HTML(visible=False), # no_results_html
gr.DataFrame(visible=False), # output_table
gr.HTML(msg, visible=True) # no_results_table
]
# Set up the button click handler
btn.click(
fn=process_and_show_results,
inputs=[input_text, model_dropdown, entity_types],
outputs=[output_html, no_results_html, output_table, no_results_table]
)
# Initial UI update
update_ui(model_dropdown.value)
return None
|