agentic-system / space /multimodal.py
Cascade Bot
Added Groq streaming support and optimizations - clean version
1d75522
"""Advanced multimodal reasoning combining different types of information."""
import logging
from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple
import json
from dataclasses import dataclass, field
from enum import Enum
from datetime import datetime
import numpy as np
from collections import defaultdict
from .base import ReasoningStrategy
@dataclass
class ModalityFeatures:
"""Features extracted from different modalities."""
text: List[Dict[str, Any]]
image: Optional[List[Dict[str, Any]]] = None
audio: Optional[List[Dict[str, Any]]] = None
video: Optional[List[Dict[str, Any]]] = None
structured: Optional[List[Dict[str, Any]]] = None
class MultiModalReasoning(ReasoningStrategy):
"""
Advanced multimodal reasoning that:
1. Processes different types of information
2. Aligns cross-modal features
3. Integrates multimodal context
4. Generates coherent responses
5. Handles uncertainty
"""
def __init__(self, config: Optional[Dict[str, Any]] = None):
"""Initialize multimodal reasoning."""
super().__init__()
self.config = config or {}
# Standard reasoning parameters
self.min_confidence = self.config.get('min_confidence', 0.7)
self.parallel_threshold = self.config.get('parallel_threshold', 3)
self.learning_rate = self.config.get('learning_rate', 0.1)
self.strategy_weights = self.config.get('strategy_weights', {
"LOCAL_LLM": 0.8,
"CHAIN_OF_THOUGHT": 0.6,
"TREE_OF_THOUGHTS": 0.5,
"META_LEARNING": 0.4
})
# Configure model repositories
self.models = self.config.get('models', {
'img2img': {
'repo_id': 'enhanceaiteam/Flux-Uncensored-V2',
'filename': 'Flux-Uncensored-V2.safetensors'
},
'img2vid': {
'repo_id': 'stabilityai/stable-video-diffusion-img2vid-xt',
'filename': 'svd_xt.safetensors'
},
'any2any': {
'repo_id': 'deepseek-ai/JanusFlow-1.3B',
'filename': 'janusflow-1.3b.safetensors'
}
})
# Configure modality weights
self.weights = self.config.get('modality_weights', {
'text': 0.4,
'image': 0.3,
'audio': 0.1,
'video': 0.1,
'structured': 0.1
})
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
"""
Apply multimodal reasoning to process and integrate different types of information.
Args:
query: The input query to reason about
context: Additional context and parameters
Returns:
Dict containing reasoning results and confidence scores
"""
try:
# Process across modalities
modalities = await self._process_modalities(query, context)
# Align cross-modal information
alignment = await self._cross_modal_alignment(modalities, context)
# Integrate aligned information
integration = await self._integrated_analysis(alignment, context)
# Generate final response
response = await self._generate_response(integration, context)
return {
'answer': response.get('text', ''),
'confidence': self._calculate_confidence(integration),
'modalities': modalities,
'alignment': alignment,
'integration': integration
}
except Exception as e:
logging.error(f"Multimodal reasoning failed: {str(e)}")
return {
'error': f"Multimodal reasoning failed: {str(e)}",
'confidence': 0.0
}
async def _process_modalities(
self,
query: str,
context: Dict[str, Any]
) -> Dict[str, List[Dict[str, Any]]]:
"""Process query across different modalities."""
modalities = {}
# Process text
if 'text' in context:
modalities['text'] = self._process_text(context['text'])
# Process images
if 'images' in context:
modalities['image'] = self._process_images(context['images'])
# Process audio
if 'audio' in context:
modalities['audio'] = self._process_audio(context['audio'])
# Process video
if 'video' in context:
modalities['video'] = self._process_video(context['video'])
# Process structured data
if 'structured' in context:
modalities['structured'] = self._process_structured(context['structured'])
return modalities
async def _cross_modal_alignment(
self,
modalities: Dict[str, List[Dict[str, Any]]],
context: Dict[str, Any]
) -> List[Dict[str, Any]]:
"""Align information across different modalities."""
alignments = []
# Get all modality pairs
modality_pairs = [
(m1, m2) for i, m1 in enumerate(modalities.keys())
for m2 in list(modalities.keys())[i+1:]
]
# Align each pair
for mod1, mod2 in modality_pairs:
items1 = modalities[mod1]
items2 = modalities[mod2]
# Calculate cross-modal similarities
for item1 in items1:
for item2 in items2:
similarity = self._calculate_similarity(item1, item2)
if similarity > 0.7: # Alignment threshold
alignments.append({
'modality1': mod1,
'modality2': mod2,
'item1': item1,
'item2': item2,
'similarity': similarity
})
return alignments
def _calculate_similarity(
self,
item1: Dict[str, Any],
item2: Dict[str, Any]
) -> float:
"""Calculate similarity between two items from different modalities."""
# Simple feature overlap for now
features1 = set(str(v) for v in item1.values())
features2 = set(str(v) for v in item2.values())
if not features1 or not features2:
return 0.0
overlap = len(features1.intersection(features2))
total = len(features1.union(features2))
return overlap / total if total > 0 else 0.0
async def _integrated_analysis(
self,
alignment: List[Dict[str, Any]],
context: Dict[str, Any]
) -> List[Dict[str, Any]]:
"""Perform integrated analysis of aligned information."""
integrated = []
# Group alignments by similarity
similarity_groups = defaultdict(list)
for align in alignment:
similarity_groups[align['similarity']].append(align)
# Process groups in order of similarity
for similarity, group in sorted(
similarity_groups.items(),
key=lambda x: x[0],
reverse=True
):
# Combine aligned features
for align in group:
integrated.append({
'features': {
**align['item1'],
**align['item2']
},
'modalities': [align['modality1'], align['modality2']],
'confidence': align['similarity']
})
return integrated
async def _generate_response(
self,
integration: List[Dict[str, Any]],
context: Dict[str, Any]
) -> Dict[str, Any]:
"""Generate coherent response from integrated analysis."""
if not integration:
return {'text': '', 'confidence': 0.0}
# Combine all integrated features
all_features = {}
for item in integration:
all_features.update(item['features'])
# Generate response text
response_text = []
# Add main findings
response_text.append("Main findings across modalities:")
for feature, value in all_features.items():
response_text.append(f"- {feature}: {value}")
# Add confidence
confidence = sum(item['confidence'] for item in integration) / len(integration)
response_text.append(f"\nOverall confidence: {confidence:.2f}")
return {
'text': "\n".join(response_text),
'confidence': confidence
}
def _calculate_confidence(self, integration: List[Dict[str, Any]]) -> float:
"""Calculate overall confidence score."""
if not integration:
return 0.0
# Base confidence
confidence = 0.5
# Adjust based on number of modalities
unique_modalities = set()
for item in integration:
unique_modalities.update(item['modalities'])
modality_bonus = len(unique_modalities) * 0.1
confidence += min(modality_bonus, 0.3)
# Adjust based on integration quality
avg_similarity = sum(
item['confidence'] for item in integration
) / len(integration)
confidence += avg_similarity * 0.2
return min(confidence, 1.0)
def _process_text(self, text: str) -> List[Dict[str, Any]]:
"""Process text modality."""
# Simple text processing for now
return [{'text': text}]
def _process_images(self, images: List[str]) -> List[Dict[str, Any]]:
"""Process image modality."""
# Simple image processing for now
return [{'image': image} for image in images]
def _process_audio(self, audio: List[str]) -> List[Dict[str, Any]]:
"""Process audio modality."""
# Simple audio processing for now
return [{'audio': audio_file} for audio_file in audio]
def _process_video(self, video: List[str]) -> List[Dict[str, Any]]:
"""Process video modality."""
# Simple video processing for now
return [{'video': video_file} for video_file in video]
def _process_structured(self, structured: Dict[str, Any]) -> List[Dict[str, Any]]:
"""Process structured data modality."""
# Simple structured data processing for now
return [{'structured': structured}]