File size: 5,387 Bytes
0af0a55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
from typing import Dict, Any, List
from loguru import logger
from utils.llm_orchestrator import LLMOrchestrator


class ReasoningAgent:
    def __init__(self, llm_api_key: str):
        """Initialize the Reasoning Agent."""
        logger.info("Initializing ReasoningAgent")
        self.llm_orchestrator = LLMOrchestrator(llm_api_key)
        self.capabilities = [
            "step_by_step_reasoning",
            "context_management",
            "agent_coordination",
            "result_aggregation"
        ]
        self.setup_logger()

    def setup_logger(self):
        """Configure logging for the agent."""
        logger.add("logs/reasoning_agent.log", rotation="500 MB")

    async def perform_reasoning(
            self, goal: str, available_agents: List[Dict[str, Any]]) -> Dict[str, Any]:
        """Perform step-by-step reasoning to achieve a goal."""
        logger.info(f"Performing reasoning for goal: {goal}")
        try:
            context = {
                "goal": goal,
                "available_agents": available_agents,
                "steps": []
            }

            # Example of a simple reasoning process with 2 steps.
            # This can be made more sophisticated based on the specific needs.
            for step in range(2):
                prompt = self.generate_reasoning_prompt(context)
                response = await self.llm_orchestrator.generate_completion(prompt)

                logger.info(f"Reasoning step {step + 1}: {response}")

                # Placeholder for action execution based on reasoning
                action = self.extract_action(response)

                if action and action["agent"] != "reasoning_agent":
                    # Here we simulate executing an action with another agent
                    # In a real scenario, this would involve calling the
                    # appropriate agent
                    action_result = await self.execute_agent_action(action, context)
                    context["steps"].append({
                        "step": step + 1,
                        "prompt": prompt,
                        "response": response,
                        "action": action,
                        "action_result": action_result
                    })
                else:
                    context["steps"].append({
                        "step": step + 1,
                        "prompt": prompt,
                        "response": response,
                        "action": action
                    })

            return {
                "status": "success",
                "reasoning_process": context["steps"],
                "result": "Reasoning process completed."  # Placeholder for final result
            }

        except Exception as e:
            logger.error(f"Error during reasoning: {str(e)}")
            return {
                "status": "error",
                "message": str(e)
            }

    def generate_reasoning_prompt(self, context: Dict[str, Any]) -> str:
        """Generate a prompt for the LLM to guide the reasoning process."""
        prompt = f"""
        Goal: {context['goal']}
        Available Agents: {', '.join([agent['name'] for agent in context['available_agents']])}

        Reasoning Steps:
        """

        for step in context["steps"]:
            prompt += f"- Step {step['step']}: {step['response']}\n"
            if "action" in step and step["action"]:
                prompt += f"  Action: {step['action']}\n"
            if "action_result" in step and step["action_result"]:
                prompt += f"  Result: {step['action_result']}\n"

        prompt += "What is the next logical step to achieve the goal? Explain your reasoning."

        return prompt

    def extract_action(self, response: str) -> Dict[str, Any]:
        """Extract the next action to be taken based on the LLM's response."""
        # Basic implementation: Assume the last line of the response contains
        # the action
        lines = response.strip().split("\n")
        last_line = lines[-1]
        if ":" in last_line:
            parts = last_line.split(":")
            agent = parts[0].strip()
            parameters = parts[1].strip() if len(parts) > 1 else ""
            return {
                "agent": agent,
                "parameters": parameters
            }
        else:
            return None

    async def execute_agent_action(
            self, action: Dict[str, Any], context: Dict[str, Any]) -> str:
        """Simulate executing an action with another agent."""
        # This is a placeholder for actual agent execution
        # In a real scenario, this method would call the appropriate agent based on action["agent"]
        # and pass the necessary parameters from action["parameters"]

        # Find the agent in the available agents list
        agent_info = next(
            (agent for agent in context["available_agents"]
             if agent["name"] == action["agent"]),
            None)

        if agent_info:
            logger.info(
                f"Executing action with agent: {action['agent']} with parameters: {action['parameters']}")
            # Simulate an action result
            return f"Result of action with {action['agent']}: Success"
        else:
            logger.error(f"Agent {action['agent']} not found.")
            return "Error: Agent not found"