File size: 8,953 Bytes
0af0a55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import aiohttp
from bs4 import BeautifulSoup
from typing import Dict, Any, List
from loguru import logger
from utils.llm_orchestrator import LLMOrchestrator
import asyncio
from urllib.parse import urljoin, urlparse


class WebBrowsingAgent:
    def __init__(self, llm_api_key: str):
        """Initialize the Web Browsing Agent."""
        logger.info("Initializing WebBrowsingAgent")
        self.llm_orchestrator = LLMOrchestrator(llm_api_key)
        self.session = None
        self.setup_logger()
        self.visited_urls = set()
        self.headers = {
            'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
        }
        self.capabilities = [
            "web_browsing",
            "data_collection",
            "content_processing",
            "information_extraction",
            "link_crawling"
        ]

    def setup_logger(self):
        """Configure logging for the agent."""
        logger.add("logs/web_browsing_agent.log", rotation="500 MB")

    async def initialize(self):
        """Initialize the aiohttp session."""
        logger.info("Initializing aiohttp session")
        if not self.session:
            self.session = aiohttp.ClientSession(headers=self.headers)

    async def execute(self, task: Dict[str, Any]) -> Dict[str, Any]:
        """Execute a web browsing task."""
        logger.info(f"Executing task: {task}")
        await self.initialize()

        if 'url' not in task:
            logger.error("URL not provided in task")
            raise ValueError("URL not provided in task")

        try:
            content = await self.collect_data(task['url'])
            processed_data = await self.process_content(content, task)
            logger.info(f"Successfully executed task: {task}")
            return {
                'status': 'success',
                'data': processed_data,
                'url': task['url']
            }
        except Exception as e:
            logger.error(f"Error executing task: {str(e)}")
            return {
                'status': 'error',
                'error': str(e),
                'url': task['url']
            }

    async def collect_data(self, url: str, retries: int = 3,
                           delay: int = 1) -> Dict[str, Any]:
        """Collect data from a URL with error handling and retries."""
        for attempt in range(retries):
            try:
                async with self.session.get(url) as response:
                    if response.status == 200:
                        html = await response.text()
                        soup = BeautifulSoup(html, 'html.parser')

                        # Extract various types of content
                        text_content = soup.get_text(separator=' ', strip=True)
                        links = [
                            link.get('href') for link in soup.find_all(
                                'a', href=True)]
                        images = [
                            img.get('src') for img in soup.find_all(
                                'img', src=True)]

                        # Process links to get absolute URLs
                        processed_links = [urljoin(url, link)
                                           for link in links]

                        logger.info(f"Successfully collected data from {url}")
                        return {
                            'url': url,
                            'text_content': text_content,
                            'links': processed_links,
                            'images': images,
                            'status_code': response.status,
                            'headers': dict(response.headers)
                        }
                    else:
                        logger.error(
                            f"HTTP {response.status}: Failed to fetch {url} on attempt {attempt + 1}")
                        if attempt < retries - 1:
                            # Exponential backoff
                            await asyncio.sleep(delay * (2 ** attempt))
                        else:
                            raise Exception(
                                f"HTTP {response.status}: Failed to fetch {url} after multiple retries")
            except aiohttp.ClientError as e:
                logger.error(
                    f"Network error on attempt {attempt + 1} for {url}: {str(e)}")
                if attempt < retries - 1:
                    # Exponential backoff
                    await asyncio.sleep(delay * (2 ** attempt))
                else:
                    raise Exception(
                        f"Network error: Failed to fetch {url} after multiple retries")
            except aiohttp.HttpProcessingError as e:
                logger.error(
                    f"HTTP processing error on attempt {attempt + 1} for {url}: {str(e)}")
                if attempt < retries - 1:
                    # Exponential backoff
                    await asyncio.sleep(delay * (2 ** attempt))
                else:
                    raise Exception(
                        f"HTTP processing error: Failed to fetch {url} after multiple retries")
            except Exception as e:
                logger.error(
                    f"Unexpected error on attempt {attempt + 1} for {url}: {str(e)}")
                if attempt < retries - 1:
                    # Exponential backoff
                    await asyncio.sleep(delay * (2 ** attempt))
                else:
                    raise Exception(
                        f"Unexpected error: Failed to fetch {url} after multiple retries")

    async def process_content(
            self, content: Dict[str, Any], task: Dict[str, Any]) -> Dict[str, Any]:
        """Process collected content using LLM."""
        logger.info(f"Processing content for {content['url']}")
        try:
            # Generate summary of the content
            summary = await self.llm_orchestrator.generate_completion(
                f"Summarize the following content:\n{content['text_content'][:1000]}..."
            )

            # Extract key information based on task requirements
            extracted_info = await self.extract_relevant_information(content, task)

            logger.info(f"Successfully processed content for {content['url']}")
            return {
                'summary': summary,
                'extracted_info': extracted_info,
                'metadata': {
                    'url': content['url'],
                    'num_links': len(content['links']),
                    'num_images': len(content['images'])
                }
            }
        except Exception as e:
            logger.error(f"Error processing content: {str(e)}")
            raise

    async def extract_relevant_information(
            self, content: Dict[str, Any], task: Dict[str, Any]) -> Dict[str, Any]:
        """Extract relevant information based on task requirements."""
        logger.info(f"Extracting relevant information for {content['url']}")
        # Use LLM to extract specific information based on task requirements
        prompt = f"""
        Extract relevant information from the following content based on these requirements:
        Task requirements: {task.get('requirements', 'general information')}

        Content:
        {content['text_content'][:1500]}...
        """

        extracted_info = await self.llm_orchestrator.generate_completion(prompt)
        logger.info(f"Successfully extracted information for {content['url']}")
        return {'extracted_information': extracted_info}

    async def crawl_links(self, base_url: str,
                          max_depth: int = 2) -> List[Dict[str, Any]]:
        """Crawl links starting from a base URL up to a maximum depth."""
        logger.info(f"Crawling links from {base_url} up to depth {max_depth}")
        results = []

        async def crawl(url: str, depth: int):
            if depth > max_depth or url in self.visited_urls:
                return

            self.visited_urls.add(url)
            try:
                content = await self.collect_data(url)
                results.append(content)

                if depth < max_depth:
                    tasks = []
                    for link in content['links']:
                        if link not in self.visited_urls:
                            tasks.append(crawl(link, depth + 1))
                    await asyncio.gather(*tasks)
            except Exception as e:
                logger.error(f"Error crawling {url}: {str(e)}")

        await crawl(base_url, 0)
        logger.info(f"Finished crawling links from {base_url}")
        return results

    async def shutdown(self):
        """Cleanup resources."""
        logger.info("Shutting down WebBrowsingAgent")
        if self.session:
            await self.session.close()
            self.session = None