File size: 9,805 Bytes
0af0a55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
from typing import Dict, List, Any
import networkx as nx
from rdflib import Graph, Literal, RDF, URIRef
from loguru import logger
from utils.llm_orchestrator import LLMOrchestrator
import json
from datetime import datetime


class KnowledgeManagementLayer:
    def __init__(self, llm_api_key: str):
        """Initialize the Knowledge Management Layer."""
        self.llm_orchestrator = LLMOrchestrator(llm_api_key)
        self.knowledge_graph = nx.DiGraph()
        self.rdf_graph = Graph()
        self.setup_logger()

    def setup_logger(self):
        """Configure logging for the knowledge management layer."""
        logger.add("logs/knowledge_management.log", rotation="500 MB")

    async def update_knowledge_graph(
            self, new_info: Dict[str, Any]) -> Dict[str, str]:
        """Update the knowledge graph with new information."""
        logger.info("Updating knowledge graph with new information")
        entities_added = 0
        relations_added = 0
        try:
            # Process new information using LLM
            processed_info = await self.process_information(new_info)

            # Add nodes and edges to the graph
            for entity in processed_info['entities']:
                self.knowledge_graph.add_node(
                    entity['id'],
                    **entity['attributes']
                )
                entities_added += 1

            for relation in processed_info['relations']:
                self.knowledge_graph.add_edge(
                    relation['source'],
                    relation['target'],
                    **relation['attributes']
                )
                relations_added += 1

            # Update RDF graph
            await self.update_rdf_graph(processed_info)

            logger.info(
                f"Successfully updated knowledge graph: Added {entities_added} entities and {relations_added} relations")
            return {
                'status': 'success',
                'message': f"Added {entities_added} entities and {relations_added} relations"
            }
        except Exception as e:
            logger.error(f"Error updating knowledge graph: {str(e)}")
            logger.error(
                f"Processed {entities_added} entities and {relations_added} relations before error")
            return {
                'status': 'error',
                'message': str(e)
            }

    async def process_information(
            self, info: Dict[str, Any]) -> Dict[str, Any]:
        """Process raw information using LLM to extract entities and relations."""
        logger.info("Processing information to extract entities and relations")
        try:
            # Generate prompt for entity extraction
            entity_prompt = f"""
            Extract entities and their attributes from the following information:
            {json.dumps(info, indent=2)}

            Return the entities in the following format:
            - Entity ID
            - Entity Type
            - Attributes (key-value pairs)
            """

            entity_response = await self.llm_orchestrator.generate_completion(entity_prompt)
            entities = self.parse_llm_response(entity_response, 'entities')
            logger.info(f"Extracted {len(entities)} entities")

            # Generate prompt for relation extraction
            relation_prompt = f"""
            Extract relations between entities from the following information:
            {json.dumps(info, indent=2)}

            Entities found:
            {json.dumps(entities, indent=2)}

            Return the relations in the following format:
            - Source Entity ID
            - Target Entity ID
            - Relation Type
            - Attributes (key-value pairs)
            """

            relation_response = await self.llm_orchestrator.generate_completion(relation_prompt)
            relations = self.parse_llm_response(relation_response, 'relations')
            logger.info(f"Extracted {len(relations)} relations")

            return {
                'entities': entities,
                'relations': relations
            }
        except Exception as e:
            logger.error(f"Error processing information: {str(e)}")
            raise

    async def update_rdf_graph(self, processed_info: Dict[str, Any]):
        """Update the RDF graph with processed information."""
        try:
            for entity in processed_info['entities']:
                subject = URIRef(f"entity:{entity['id']}")
                self.rdf_graph.add(
                    (subject, RDF.type, URIRef(f"type:{entity['type']}")))

                for key, value in entity['attributes'].items():
                    self.rdf_graph.add(
                        (subject, URIRef(f"attribute:{key}"), Literal(value)))

            for relation in processed_info['relations']:
                subject = URIRef(f"entity:{relation['source']}")
                obj = URIRef(f"entity:{relation['target']}")
                predicate = URIRef(f"relation:{relation['type']}")
                self.rdf_graph.add((subject, predicate, obj))

                for key, value in relation['attributes'].items():
                    self.rdf_graph.add(
                        (predicate, URIRef(f"attribute:{key}"), Literal(value)))
        except Exception as e:
            logger.error(f"Error updating RDF graph: {str(e)}")
            raise

    async def query_knowledge(self, query: Dict[str, Any]) -> Dict[str, Any]:
        """Query the knowledge graph based on specific criteria."""
        try:
            # Generate SPARQL query using LLM
            sparql_prompt = f"""
            Generate a SPARQL query for the following search criteria:
            {json.dumps(query, indent=2)}
            """

            sparql_query = await self.llm_orchestrator.generate_completion(sparql_prompt)

            # Execute query on RDF graph
            results = self.rdf_graph.query(sparql_query)

            # Process and format results
            formatted_results = await self.format_query_results(results)

            return {
                'status': 'success',
                'results': formatted_results
            }
        except Exception as e:
            logger.error(f"Error querying knowledge graph: {str(e)}")
            return {
                'status': 'error',
                'message': str(e)
            }

    async def generate_insights(
            self, context: Dict[str, Any]) -> List[Dict[str, Any]]:
        """Generate insights from the knowledge graph."""
        try:
            # Extract relevant subgraph based on context
            subgraph = self.extract_relevant_subgraph(context)

            # Generate insights using LLM
            insight_prompt = f"""
            Generate insights from the following knowledge graph data:
            Nodes: {len(subgraph.nodes)}
            Edges: {len(subgraph.edges)}
            Context: {json.dumps(context, indent=2)}

            Graph Summary:
            {self.summarize_subgraph(subgraph)}
            """

            insights = await self.llm_orchestrator.generate_completion(insight_prompt)

            return self.parse_llm_response(insights, 'insights')
        except Exception as e:
            logger.error(f"Error generating insights: {str(e)}")
            raise

    def extract_relevant_subgraph(self, context: Dict[str, Any]) -> nx.DiGraph:
        """Extract a relevant subgraph based on context."""
        # Implementation would include logic to extract relevant portions of the graph
        # based on the provided context
        return self.knowledge_graph

    def summarize_subgraph(self, subgraph: nx.DiGraph) -> str:
        """Generate a summary of the subgraph."""
        summary = {
            'node_types': {},
            'edge_types': {},
            'key_entities': []
        }

        # Count node types
        for node in subgraph.nodes(data=True):
            node_type = node[1].get('type', 'unknown')
            summary['node_types'][node_type] = summary['node_types'].get(
                node_type, 0) + 1

        # Count edge types
        for edge in subgraph.edges(data=True):
            edge_type = edge[2].get('type', 'unknown')
            summary['edge_types'][edge_type] = summary['edge_types'].get(
                edge_type, 0) + 1

        # Identify key entities (e.g., nodes with highest degree)
        for node in sorted(subgraph.degree, key=lambda x: x[1], reverse=True)[
                :5]:
            summary['key_entities'].append({
                'id': node[0],
                'degree': node[1]
            })

        return json.dumps(summary, indent=2)

    @staticmethod
    def parse_llm_response(
            response: str, response_type: str) -> List[Dict[str, Any]]:
        """Parse LLM response into structured data."""
        # Implementation would include logic to parse the LLM's response
        # into a structured format based on the response_type
        return []  # Placeholder return

    async def backup_knowledge(self, backup_path: str):
        """Backup the knowledge graph to a file."""
        try:
            timestamp = datetime.utcnow().strftime('%Y%m%d_%H%M%S')

            # Backup NetworkX graph
            nx.write_gpickle(
                self.knowledge_graph,
                f"{backup_path}/knowledge_graph_{timestamp}.gpickle")

            # Backup RDF graph
            self.rdf_graph.serialize(
                f"{backup_path}/rdf_graph_{timestamp}.ttl",
                format="turtle")

            logger.info(
                f"Knowledge graph backed up successfully at {timestamp}")
        except Exception as e:
            logger.error(f"Error backing up knowledge graph: {str(e)}")
            raise