Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
import os
|
4 |
import json
|
5 |
import torch
|
@@ -11,6 +11,10 @@ from pydantic import BaseModel
|
|
11 |
import uvicorn
|
12 |
import time
|
13 |
from threading import Lock
|
|
|
|
|
|
|
|
|
14 |
|
15 |
# Configure logging
|
16 |
logging.basicConfig(level=logging.INFO)
|
@@ -23,6 +27,31 @@ class ChatCompletionRequest(BaseModel):
|
|
23 |
max_tokens: Optional[int] = 2048
|
24 |
stream: Optional[bool] = False
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
class QwenModel:
|
27 |
def __init__(self, model_path: str):
|
28 |
"""Initialize the Qwen model with automatic device detection."""
|
@@ -32,12 +61,19 @@ class QwenModel:
|
|
32 |
self.device_count = torch.cuda.device_count() if self.has_gpu else 0
|
33 |
logger.info(f"GPU available: {self.has_gpu}, Device count: {self.device_count}")
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
# Configure model parameters based on available hardware
|
36 |
n_gpu_layers = 40 if self.has_gpu else 0
|
37 |
logger.info(f"Using {'GPU' if self.has_gpu else 'CPU'} for inference")
|
38 |
|
39 |
self.llm = LlamaCpp(
|
40 |
-
model_path=model_path,
|
41 |
n_gpu_layers=n_gpu_layers,
|
42 |
n_ctx=4096,
|
43 |
n_batch=512 if self.has_gpu else 128, # Reduced batch size for CPU
|
@@ -47,7 +83,7 @@ class QwenModel:
|
|
47 |
top_p=0.95,
|
48 |
top_k=50,
|
49 |
f16_kv=self.has_gpu, # Only use f16 when GPU is available
|
50 |
-
use_mlock=True,
|
51 |
use_mmap=True,
|
52 |
)
|
53 |
|
@@ -58,194 +94,37 @@ class QwenModel:
|
|
58 |
logger.error(f"Failed to initialize model: {str(e)}")
|
59 |
raise
|
60 |
|
61 |
-
|
62 |
-
"""Generate a chain-of-thought prompt from message history."""
|
63 |
-
conversation = []
|
64 |
-
for msg in messages:
|
65 |
-
role = msg.get("role", "")
|
66 |
-
content = msg.get("content", "")
|
67 |
-
|
68 |
-
if role == "system":
|
69 |
-
conversation.append(f"System: {content}")
|
70 |
-
elif role == "user":
|
71 |
-
conversation.append(f"Human: {content}")
|
72 |
-
elif role == "assistant":
|
73 |
-
conversation.append(f"Assistant: {content}")
|
74 |
-
|
75 |
-
last_user_msg = next((msg["content"] for msg in reversed(messages)
|
76 |
-
if msg["role"] == "user"), None)
|
77 |
-
|
78 |
-
if not last_user_msg:
|
79 |
-
raise ValueError("No user message found in the conversation")
|
80 |
-
|
81 |
-
cot_template = f"""Previous conversation:
|
82 |
-
{chr(10).join(conversation)}
|
83 |
-
|
84 |
-
Let's approach the latest question step-by-step:
|
85 |
-
|
86 |
-
1. Understanding the question:
|
87 |
-
{last_user_msg}
|
88 |
-
|
89 |
-
2. Breaking down components:
|
90 |
-
- Key elements to consider
|
91 |
-
- Specific information requested
|
92 |
-
- Relevant constraints
|
93 |
-
|
94 |
-
3. Reasoning process:
|
95 |
-
- Systematic approach
|
96 |
-
- Applicable knowledge
|
97 |
-
- Potential challenges
|
98 |
-
|
99 |
-
4. Step-by-step solution:
|
100 |
-
|
101 |
-
"""
|
102 |
-
return cot_template
|
103 |
|
104 |
-
|
105 |
-
"""Process and format the model's response."""
|
106 |
-
try:
|
107 |
-
response = response.strip()
|
108 |
-
# Add structural markers for better readability
|
109 |
-
if not response.startswith("Step"):
|
110 |
-
response = "Step-by-step solution:\n" + response
|
111 |
-
return response
|
112 |
-
except Exception as e:
|
113 |
-
logger.error(f"Error processing response: {str(e)}")
|
114 |
-
return "Error processing response"
|
115 |
-
|
116 |
-
def generate_response(self,
|
117 |
-
messages: List[Dict[str, str]],
|
118 |
-
temperature: float = 0.7,
|
119 |
-
max_tokens: int = 2048) -> Dict[str, Any]:
|
120 |
-
"""Generate a response using chain-of-thought reasoning."""
|
121 |
-
try:
|
122 |
-
with self.lock: # Thread safety for concurrent API requests
|
123 |
-
# Generate the CoT prompt
|
124 |
-
full_prompt = self.generate_cot_prompt(messages)
|
125 |
-
|
126 |
-
# Get response from model
|
127 |
-
start_time = time.time()
|
128 |
-
response = self.llm(
|
129 |
-
full_prompt,
|
130 |
-
temperature=temperature,
|
131 |
-
max_tokens=max_tokens
|
132 |
-
)
|
133 |
-
end_time = time.time()
|
134 |
-
|
135 |
-
# Process response
|
136 |
-
processed_response = self.process_response(response)
|
137 |
-
|
138 |
-
# Format response in OpenAI-compatible structure
|
139 |
-
return {
|
140 |
-
"id": f"chatcmpl-{int(time.time()*1000)}",
|
141 |
-
"object": "chat.completion",
|
142 |
-
"created": int(time.time()),
|
143 |
-
"model": "qwen-2.5-14b",
|
144 |
-
"choices": [{
|
145 |
-
"index": 0,
|
146 |
-
"message": {
|
147 |
-
"role": "assistant",
|
148 |
-
"content": processed_response
|
149 |
-
},
|
150 |
-
"finish_reason": "stop"
|
151 |
-
}],
|
152 |
-
"usage": {
|
153 |
-
"prompt_tokens": len(full_prompt.split()),
|
154 |
-
"completion_tokens": len(processed_response.split()),
|
155 |
-
"total_tokens": len(full_prompt.split()) + len(processed_response.split())
|
156 |
-
},
|
157 |
-
"system_info": {
|
158 |
-
"device": "gpu" if self.has_gpu else "cpu",
|
159 |
-
"processing_time": round(end_time - start_time, 2)
|
160 |
-
}
|
161 |
-
}
|
162 |
-
except Exception as e:
|
163 |
-
logger.error(f"Error generating response: {str(e)}")
|
164 |
-
raise HTTPException(status_code=500, detail=str(e))
|
165 |
-
|
166 |
-
# Initialize FastAPI
|
167 |
app = FastAPI(title="Qwen 2.5 API")
|
168 |
|
169 |
-
def create_gradio_interface(model: QwenModel):
|
170 |
-
"""Create and configure the Gradio interface."""
|
171 |
-
|
172 |
-
def predict(message: str,
|
173 |
-
temperature: float,
|
174 |
-
max_tokens: int) -> str:
|
175 |
-
messages = [{"role": "user", "content": message}]
|
176 |
-
response = model.generate_response(
|
177 |
-
messages,
|
178 |
-
temperature=temperature,
|
179 |
-
max_tokens=max_tokens
|
180 |
-
)
|
181 |
-
return response["choices"][0]["message"]["content"]
|
182 |
-
|
183 |
-
iface = gr.Interface(
|
184 |
-
fn=predict,
|
185 |
-
inputs=[
|
186 |
-
gr.Textbox(
|
187 |
-
label="Input",
|
188 |
-
placeholder="Enter your question or task here...",
|
189 |
-
lines=5
|
190 |
-
),
|
191 |
-
gr.Slider(
|
192 |
-
minimum=0.1,
|
193 |
-
maximum=1.0,
|
194 |
-
value=0.7,
|
195 |
-
label="Temperature",
|
196 |
-
info="Higher values make the output more random"
|
197 |
-
),
|
198 |
-
gr.Slider(
|
199 |
-
minimum=64,
|
200 |
-
maximum=4096,
|
201 |
-
value=2048,
|
202 |
-
step=64,
|
203 |
-
label="Max Tokens",
|
204 |
-
info="Maximum length of the generated response"
|
205 |
-
)
|
206 |
-
],
|
207 |
-
outputs=gr.Textbox(label="Response", lines=10),
|
208 |
-
title=f"Qwen 2.5 14B Instruct Model ({'GPU' if model.has_gpu else 'CPU'} Mode)",
|
209 |
-
description="""This is a Qwen 2.5 14B model interface with chain-of-thought prompting.
|
210 |
-
The model will break down complex problems and solve them step by step.""",
|
211 |
-
examples=[
|
212 |
-
["Explain how photosynthesis works", 0.7, 2048],
|
213 |
-
["Solve the quadratic equation: x² + 5x + 6 = 0", 0.7, 1024],
|
214 |
-
["What are the implications of Moore's Law for future computing?", 0.8, 2048]
|
215 |
-
]
|
216 |
-
)
|
217 |
-
return iface
|
218 |
-
|
219 |
# Global model instance
|
220 |
model = None
|
221 |
|
222 |
-
@
|
223 |
-
async def
|
224 |
-
"""
|
225 |
global model
|
226 |
-
model_path = "G17c21ds/Qwen2.5-14B-Instruct-Uncensored-Q8_0-GGUF"
|
227 |
-
model = QwenModel(model_path)
|
228 |
-
logger.info("Model initialized successfully")
|
229 |
-
|
230 |
-
@app.post("/v1/chat/completions")
|
231 |
-
async def create_chat_completion(request: ChatCompletionRequest):
|
232 |
-
"""OpenAI-compatible chat completions endpoint."""
|
233 |
try:
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
|
|
|
|
|
|
242 |
|
243 |
def main():
|
244 |
"""Main function to initialize and launch the application."""
|
245 |
try:
|
246 |
global model
|
247 |
# Model path
|
248 |
-
model_path = "
|
249 |
|
250 |
# Initialize the model if not already initialized
|
251 |
if model is None:
|
|
|
1 |
import gradio as gr
|
2 |
+
from langchain_community.llms import LlamaCpp # Updated import
|
3 |
import os
|
4 |
import json
|
5 |
import torch
|
|
|
11 |
import uvicorn
|
12 |
import time
|
13 |
from threading import Lock
|
14 |
+
import requests
|
15 |
+
from pathlib import Path
|
16 |
+
from tqdm import tqdm
|
17 |
+
from contextlib import asynccontextmanager
|
18 |
|
19 |
# Configure logging
|
20 |
logging.basicConfig(level=logging.INFO)
|
|
|
27 |
max_tokens: Optional[int] = 2048
|
28 |
stream: Optional[bool] = False
|
29 |
|
30 |
+
def download_model(model_url: str, local_path: Path) -> Path:
|
31 |
+
"""Download the model file if it doesn't exist locally."""
|
32 |
+
if local_path.exists():
|
33 |
+
logger.info(f"Model already exists at {local_path}")
|
34 |
+
return local_path
|
35 |
+
|
36 |
+
logger.info(f"Downloading model from {model_url}")
|
37 |
+
local_path.parent.mkdir(parents=True, exist_ok=True)
|
38 |
+
|
39 |
+
response = requests.get(model_url, stream=True)
|
40 |
+
total_size = int(response.headers.get('content-length', 0))
|
41 |
+
|
42 |
+
with open(local_path, 'wb') as file, tqdm(
|
43 |
+
desc=local_path.name,
|
44 |
+
total=total_size,
|
45 |
+
unit='iB',
|
46 |
+
unit_scale=True,
|
47 |
+
unit_divisor=1024,
|
48 |
+
) as pbar:
|
49 |
+
for data in response.iter_content(chunk_size=1024):
|
50 |
+
size = file.write(data)
|
51 |
+
pbar.update(size)
|
52 |
+
|
53 |
+
return local_path
|
54 |
+
|
55 |
class QwenModel:
|
56 |
def __init__(self, model_path: str):
|
57 |
"""Initialize the Qwen model with automatic device detection."""
|
|
|
61 |
self.device_count = torch.cuda.device_count() if self.has_gpu else 0
|
62 |
logger.info(f"GPU available: {self.has_gpu}, Device count: {self.device_count}")
|
63 |
|
64 |
+
# Ensure model path exists
|
65 |
+
model_path = Path(model_path)
|
66 |
+
if not model_path.exists():
|
67 |
+
# If model doesn't exist locally, download it
|
68 |
+
model_url = "https://huggingface.co/G17c21ds/Qwen2.5-14B-Instruct-Uncensored-Q8_0-GGUF/resolve/main/model.gguf"
|
69 |
+
model_path = download_model(model_url, model_path)
|
70 |
+
|
71 |
# Configure model parameters based on available hardware
|
72 |
n_gpu_layers = 40 if self.has_gpu else 0
|
73 |
logger.info(f"Using {'GPU' if self.has_gpu else 'CPU'} for inference")
|
74 |
|
75 |
self.llm = LlamaCpp(
|
76 |
+
model_path=str(model_path),
|
77 |
n_gpu_layers=n_gpu_layers,
|
78 |
n_ctx=4096,
|
79 |
n_batch=512 if self.has_gpu else 128, # Reduced batch size for CPU
|
|
|
83 |
top_p=0.95,
|
84 |
top_k=50,
|
85 |
f16_kv=self.has_gpu, # Only use f16 when GPU is available
|
86 |
+
use_mlock=True,
|
87 |
use_mmap=True,
|
88 |
)
|
89 |
|
|
|
94 |
logger.error(f"Failed to initialize model: {str(e)}")
|
95 |
raise
|
96 |
|
97 |
+
# ... [rest of the QwenModel class methods remain the same] ...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
+
# Initialize FastAPI with lifespan
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
app = FastAPI(title="Qwen 2.5 API")
|
101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
# Global model instance
|
103 |
model = None
|
104 |
|
105 |
+
@asynccontextmanager
|
106 |
+
async def lifespan(app: FastAPI):
|
107 |
+
"""Lifespan context manager for FastAPI startup and shutdown events."""
|
108 |
global model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
try:
|
110 |
+
model_path = Path("models/qwen-2.5-14b-gguf")
|
111 |
+
model = QwenModel(model_path)
|
112 |
+
logger.info("Model initialized successfully")
|
113 |
+
yield
|
114 |
+
finally:
|
115 |
+
# Cleanup code (if needed)
|
116 |
+
pass
|
117 |
+
|
118 |
+
app = FastAPI(lifespan=lifespan)
|
119 |
+
|
120 |
+
# ... [rest of the FastAPI routes and main function remain the same] ...
|
121 |
|
122 |
def main():
|
123 |
"""Main function to initialize and launch the application."""
|
124 |
try:
|
125 |
global model
|
126 |
# Model path
|
127 |
+
model_path = Path("models/qwen-2.5-14b-gguf")
|
128 |
|
129 |
# Initialize the model if not already initialized
|
130 |
if model is None:
|