nandadev commited on
Commit
8d624f6
Β·
1 Parent(s): 9b814d0
Files changed (1) hide show
  1. app.py +20 -1
app.py CHANGED
@@ -6,6 +6,7 @@ import torch
6
  from GoogleNews import GoogleNews
7
  from transformers import pipeline
8
 
 
9
  # Set up logging
10
  logging.basicConfig(
11
  level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
@@ -88,8 +89,16 @@ def convert_to_dataframe(analyzed_articles):
88
 
89
  with gr.Blocks() as iface:
90
  gr.Markdown("# Trading Asset Sentiment Analysis")
 
 
 
 
91
  gr.Markdown(
92
- "Enter the name of a trading asset, and I'll fetch recent articles and analyze their sentiment!"
 
 
 
 
93
  )
94
 
95
  with gr.Row():
@@ -108,6 +117,16 @@ with gr.Blocks() as iface:
108
  "Tesla",
109
  "Apple",
110
  "Amazon",
 
 
 
 
 
 
 
 
 
 
111
  ],
112
  inputs=input_asset,
113
  )
 
6
  from GoogleNews import GoogleNews
7
  from transformers import pipeline
8
 
9
+
10
  # Set up logging
11
  logging.basicConfig(
12
  level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
 
89
 
90
  with gr.Blocks() as iface:
91
  gr.Markdown("# Trading Asset Sentiment Analysis")
92
+ gr.Markdown("Analyze the sentiment of recent articles related to a trading asset.")
93
+ gr.Markdown("---")
94
+ gr.Markdown("### πŸ‘¨β€πŸ’» Author: **Nanda Safiq Alfiansyah** - time")
95
+ gr.Markdown("### πŸ†” NIM: 21533401 | Kelas: TI 7A")
96
  gr.Markdown(
97
+ """
98
+ πŸ”Ž **How it works:**
99
+ Enter the name of a trading asset below, and I'll fetch the latest articles
100
+ and provide a detailed sentiment analysis. Let's dive in!
101
+ """
102
  )
103
 
104
  with gr.Row():
 
117
  "Tesla",
118
  "Apple",
119
  "Amazon",
120
+ "Microsoft",
121
+ "Meta",
122
+ "Google",
123
+ "Ethereum",
124
+ "Gold",
125
+ "Crude Oil",
126
+ "USD/EUR",
127
+ "Alibaba",
128
+ "Netflix",
129
+ "Samsung",
130
  ],
131
  inputs=input_asset,
132
  )