Spaces:
Runtime error
Runtime error
nandovallec
commited on
Commit
·
9cb5f62
1
Parent(s):
f3e36b8
Optimization
Browse files- app.py +4 -2
- recommender.py +14 -8
app.py
CHANGED
@@ -9,7 +9,7 @@ import requests
|
|
9 |
import base64
|
10 |
import json
|
11 |
import sys
|
12 |
-
|
13 |
import re
|
14 |
import asyncio
|
15 |
# import streamlit.components.v1 as components
|
@@ -20,7 +20,6 @@ import numpy as np
|
|
20 |
import pandas as pd
|
21 |
import os
|
22 |
from scipy.sparse import vstack
|
23 |
-
from recommender import *
|
24 |
import huggingface_hub
|
25 |
from huggingface_hub import Repository
|
26 |
|
@@ -44,6 +43,9 @@ repo_mat = Repository(
|
|
44 |
local_dir="data_mat", clone_from=DATASET_REPO_URL_MAT, use_auth_token=HF_TOKEN, repo_type="dataset"
|
45 |
)
|
46 |
|
|
|
|
|
|
|
47 |
def get_repo_train():
|
48 |
repo_train = Repository(
|
49 |
local_dir="data_train", clone_from=DATASET_REPO_URL_TRAIN, use_auth_token=HF_TOKEN, repo_type="dataset"
|
|
|
9 |
import base64
|
10 |
import json
|
11 |
import sys
|
12 |
+
|
13 |
import re
|
14 |
import asyncio
|
15 |
# import streamlit.components.v1 as components
|
|
|
20 |
import pandas as pd
|
21 |
import os
|
22 |
from scipy.sparse import vstack
|
|
|
23 |
import huggingface_hub
|
24 |
from huggingface_hub import Repository
|
25 |
|
|
|
43 |
local_dir="data_mat", clone_from=DATASET_REPO_URL_MAT, use_auth_token=HF_TOKEN, repo_type="dataset"
|
44 |
)
|
45 |
|
46 |
+
from fetchPlaylistTrackUris import *
|
47 |
+
from recommender import *
|
48 |
+
|
49 |
def get_repo_train():
|
50 |
repo_train = Repository(
|
51 |
local_dir="data_train", clone_from=DATASET_REPO_URL_TRAIN, use_auth_token=HF_TOKEN, repo_type="dataset"
|
recommender.py
CHANGED
@@ -5,6 +5,15 @@ import numpy as np
|
|
5 |
import pandas as pd
|
6 |
from scipy.sparse import vstack
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
def add_row_train(df, list_tid):
|
9 |
new_pid_add = df.iloc[-1].name +1
|
10 |
list_tid_add = list_tid
|
@@ -25,9 +34,9 @@ def inference_row(list_tid, ps_matrix):
|
|
25 |
|
26 |
|
27 |
def get_best_tid(current_list, ps_matrix_row, K=50, MAX_tid=10):
|
28 |
-
|
29 |
-
|
30 |
-
df_ps_train = pd.concat([
|
31 |
|
32 |
sim_vector, sparse_row = inference_row(current_list, ps_matrix_row)
|
33 |
sim_vector = sim_vector.toarray()[0].tolist()
|
@@ -76,16 +85,13 @@ def get_best_tid(current_list, ps_matrix_row, K=50, MAX_tid=10):
|
|
76 |
|
77 |
|
78 |
def inference_from_tid(list_tid, K=50, MAX_tid=10):
|
79 |
-
pickle_path = 'model/giantMatrix_new.pickle'
|
80 |
-
# pickle_path = 'data/giantMatrix_truth_new.pickle'
|
81 |
|
82 |
-
|
83 |
-
ps_matrix = pickle.load(f)
|
84 |
|
85 |
with open("data_mat/giantMatrix_extra.pickle",'rb') as f:
|
86 |
ps_matrix_extra = pickle.load(f)
|
87 |
|
88 |
-
ps_matrix = vstack((
|
89 |
|
90 |
result, sparse_row = get_best_tid(list_tid, ps_matrix.tocsr(), K, MAX_tid)
|
91 |
ps_matrix_extra = vstack((ps_matrix_extra,sparse_row.todok()))
|
|
|
5 |
import pandas as pd
|
6 |
from scipy.sparse import vstack
|
7 |
|
8 |
+
|
9 |
+
df_ps_train_ori = pd.read_hdf('model/df_ps_train_new.hdf')
|
10 |
+
df_ps_train_extra = pd.read_hdf('data_train/df_ps_train_extra.hdf')
|
11 |
+
pickle_path = 'model/giantMatrix_new.pickle'
|
12 |
+
with open(pickle_path, 'rb') as f:
|
13 |
+
ps_matrix_ori = pickle.load(f)
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
def add_row_train(df, list_tid):
|
18 |
new_pid_add = df.iloc[-1].name +1
|
19 |
list_tid_add = list_tid
|
|
|
34 |
|
35 |
|
36 |
def get_best_tid(current_list, ps_matrix_row, K=50, MAX_tid=10):
|
37 |
+
|
38 |
+
|
39 |
+
df_ps_train = pd.concat([df_ps_train_ori,df_ps_train_extra])
|
40 |
|
41 |
sim_vector, sparse_row = inference_row(current_list, ps_matrix_row)
|
42 |
sim_vector = sim_vector.toarray()[0].tolist()
|
|
|
85 |
|
86 |
|
87 |
def inference_from_tid(list_tid, K=50, MAX_tid=10):
|
|
|
|
|
88 |
|
89 |
+
# pickle_path = 'data/giantMatrix_truth_new.pickle'
|
|
|
90 |
|
91 |
with open("data_mat/giantMatrix_extra.pickle",'rb') as f:
|
92 |
ps_matrix_extra = pickle.load(f)
|
93 |
|
94 |
+
ps_matrix = vstack((ps_matrix_ori,ps_matrix_extra))
|
95 |
|
96 |
result, sparse_row = get_best_tid(list_tid, ps_matrix.tocsr(), K, MAX_tid)
|
97 |
ps_matrix_extra = vstack((ps_matrix_extra,sparse_row.todok()))
|