nandovallec commited on
Commit
fa7f40e
1 Parent(s): d8bd4d4

Optimization

Browse files
Files changed (2) hide show
  1. app.py +0 -6
  2. recommender.py +4 -4
app.py CHANGED
@@ -43,12 +43,6 @@ repo_mat = Repository(
43
  local_dir="data_mat", clone_from=DATASET_REPO_URL_MAT, use_auth_token=HF_TOKEN, repo_type="dataset"
44
  )
45
 
46
- df_ps_train_ori = pd.read_hdf('model/df_ps_train_new.hdf')
47
- df_ps_train_extra = pd.read_hdf('data_train/df_ps_train_extra.hdf')
48
- pickle_path = 'model/giantMatrix_new.pickle'
49
- with open(pickle_path, 'rb') as f:
50
- ps_matrix_ori = pickle.load(f)
51
-
52
  from fetchPlaylistTrackUris import *
53
  from recommender import *
54
 
 
43
  local_dir="data_mat", clone_from=DATASET_REPO_URL_MAT, use_auth_token=HF_TOKEN, repo_type="dataset"
44
  )
45
 
 
 
 
 
 
 
46
  from fetchPlaylistTrackUris import *
47
  from recommender import *
48
 
recommender.py CHANGED
@@ -4,6 +4,7 @@ from scipy.sparse import csr_matrix
4
  import numpy as np
5
  import pandas as pd
6
  from scipy.sparse import vstack
 
7
 
8
  def add_row_train(df, list_tid):
9
  new_pid_add = df.iloc[-1].name +1
@@ -25,9 +26,8 @@ def inference_row(list_tid, ps_matrix):
25
 
26
 
27
  def get_best_tid(current_list, ps_matrix_row, K=50, MAX_tid=10):
28
-
29
-
30
- df_ps_train = pd.concat([df_ps_train_ori,df_ps_train_extra])
31
 
32
  sim_vector, sparse_row = inference_row(current_list, ps_matrix_row)
33
  sim_vector = sim_vector.toarray()[0].tolist()
@@ -82,7 +82,7 @@ def inference_from_tid(list_tid, K=50, MAX_tid=10):
82
  with open("data_mat/giantMatrix_extra.pickle",'rb') as f:
83
  ps_matrix_extra = pickle.load(f)
84
 
85
- ps_matrix = vstack((ps_matrix_ori,ps_matrix_extra))
86
 
87
  result, sparse_row = get_best_tid(list_tid, ps_matrix.tocsr(), K, MAX_tid)
88
  ps_matrix_extra = vstack((ps_matrix_extra,sparse_row.todok()))
 
4
  import numpy as np
5
  import pandas as pd
6
  from scipy.sparse import vstack
7
+ import global_var
8
 
9
  def add_row_train(df, list_tid):
10
  new_pid_add = df.iloc[-1].name +1
 
26
 
27
 
28
  def get_best_tid(current_list, ps_matrix_row, K=50, MAX_tid=10):
29
+ df_ps_train_extra = pd.read_hdf('data_train/df_ps_train_extra.hdf')
30
+ df_ps_train = pd.concat([global_var.df_ps_train_ori,df_ps_train_extra])
 
31
 
32
  sim_vector, sparse_row = inference_row(current_list, ps_matrix_row)
33
  sim_vector = sim_vector.toarray()[0].tolist()
 
82
  with open("data_mat/giantMatrix_extra.pickle",'rb') as f:
83
  ps_matrix_extra = pickle.load(f)
84
 
85
+ ps_matrix = vstack((global_var.ps_matrix_ori,ps_matrix_extra))
86
 
87
  result, sparse_row = get_best_tid(list_tid, ps_matrix.tocsr(), K, MAX_tid)
88
  ps_matrix_extra = vstack((ps_matrix_extra,sparse_row.todok()))