import pickle import sklearn.preprocessing as pp from scipy.sparse import csr_matrix import numpy as np import pandas as pd from scipy.sparse import vstack import dataset_url import huggingface_hub from huggingface_hub import Repository def save_train_repo(df): repo = Repository( local_dir="data", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN ) df.to_hdf(DATA_FILE, key='abc') commit_url = repo.push_to_hub() return def add_row_train(df, list_tid): new_pid_add = df.iloc[-1].name +1 list_tid_add = list_tid list_pos_add = list(range(len(list_tid_add))) df.loc[new_pid_add] = {'tid': list_tid_add,'pos': list_pos_add} return df def inference_row(list_tid, ps_matrix): ps_matrix_norm = pp.normalize(ps_matrix, axis=1) length_tid = len(list_tid) n_songs = ps_matrix.shape[1] sparse_row = csr_matrix((np.ones(length_tid), (np.zeros(length_tid), list_tid)), shape=(1, n_songs)) sparse_row_norm = pp.normalize(sparse_row, axis=1) return sparse_row_norm * ps_matrix_norm.T, sparse_row def get_best_tid(current_list, ps_matrix_row, K=50, MAX_tid=10): df_ps_train = pd.read_hdf('model/df_ps_train_new.hdf') df_ps_train_extra = pd.read_hdf('data_train/df_ps_train_extra.hdf') df_ps_train = pd.concat([df_ps_train,df_ps_train_extra]) sim_vector, sparse_row = inference_row(current_list, ps_matrix_row) sim_vector = sim_vector.toarray()[0].tolist() # Enumerate index and rating counter_list = list(enumerate(sim_vector, 0)) # Sort by rating sortedList = sorted(counter_list, key=lambda x: x[1], reverse=True) topK_pid = [i for i, _ in sortedList[1:K + 1]] n = 0 new_list = [] while (1): top_pid = topK_pid[n] add_tid_list = df_ps_train.loc[top_pid].tid # Form new list new_tid_list = new_list + add_tid_list new_tid_list = [x for x in new_tid_list if x not in current_list] new_tid_list = list(dict.fromkeys(new_tid_list)) # Check number of songs and Add to data for prediction total_song = len(new_tid_list) # print("n: {}\t total_song: {}".format(n,total_song)) if (total_song > MAX_tid): new_tid_list = new_tid_list[:MAX_tid] # Add new_list = new_tid_list break else: new_list = new_tid_list n += 1 if (n == K): break df_ps_train_extra = add_row_train(df_ps_train_extra, current_list) df_ps_train_extra.to_hdf('data_train/df_ps_train_extra.hdf', key='abc') return new_list, sparse_row def inference_from_tid(list_tid, K=50, MAX_tid=10): pickle_path = 'model/giantMatrix_new.pickle' # pickle_path = 'data/giantMatrix_truth_new.pickle' with open(pickle_path, 'rb') as f: ps_matrix = pickle.load(f) with open("data_mat/giantMatrix_extra.pickle",'rb') as f: ps_matrix_extra = pickle.load(f) ps_matrix = vstack((ps_matrix,ps_matrix_extra)) result, sparse_row = get_best_tid(list_tid, ps_matrix.tocsr(), K, MAX_tid) ps_matrix_extra = vstack((ps_matrix_extra,sparse_row.todok())) with open("data_mat/giantMatrix_extra.pickle", 'wb') as f: pickle.dump(ps_matrix_extra, f) return result def inference_from_uri(list_uri, K=50, MAX_tid=10): with open('model/dict_uri2tid.pkl', 'rb') as f: dict_uri2tid = pickle.load(f) list_tid = [dict_uri2tid[x] for x in list_uri if x in dict_uri2tid] best_tid = inference_from_tid(list_tid, K, MAX_tid) with open('model/dict_tid2uri.pkl', 'rb') as f: dict_tid2uri = pickle.load(f) best_uri = [dict_tid2uri[x] for x in best_tid] return best_uri