import pickle import sklearn.preprocessing as pp from scipy.sparse import csr_matrix import numpy as np import pandas as pd def inference_row(list_tid, ps_matrix): ps_matrix_norm = pp.normalize(ps_matrix, axis=1) length_tid = len(list_tid) n_songs = ps_matrix.shape[1] sparse_row = csr_matrix((np.ones(length_tid), (np.zeros(length_tid), list_tid)), shape=(1, n_songs)) sparse_row_norm = pp.normalize(sparse_row, axis=1) return sparse_row_norm * ps_matrix_norm.T, sparse_row def get_best_tid(current_list, ps_matrix_row, K=50, MAX_tid=10): df_ps_train = pd.read_hdf('model/df_ps_train_new.hdf') sim_vector, sparse_row = inference_row(current_list, ps_matrix_row) sim_vector = sim_vector.toarray()[0].tolist() # Enumerate index and rating counter_list = list(enumerate(sim_vector, 0)) # Sort by rating sortedList = sorted(counter_list, key=lambda x: x[1], reverse=True) topK_pid = [i for i, _ in sortedList[1:K + 1]] n = 0 new_list = [] while (1): top_pid = topK_pid[n] add_tid_list = df_ps_train.loc[top_pid].tid # Form new list new_tid_list = new_list + add_tid_list new_tid_list = [x for x in new_tid_list if x not in current_list] new_tid_list = list(dict.fromkeys(new_tid_list)) # Check number of songs and Add to data for prediction total_song = len(new_tid_list) # print("n: {}\t total_song: {}".format(n,total_song)) if (total_song > MAX_tid): new_tid_list = new_tid_list[:MAX_tid] # Add new_list = new_tid_list break else: new_list = new_tid_list n += 1 if (n == K): break return new_list def inference_from_tid(list_tid, K=50, MAX_tid=10): pickle_path = 'model/giantMatrix_new.pickle' # pickle_path = 'data/giantMatrix_truth_new.pickle' with open(pickle_path, 'rb') as f: ps_matrix = pickle.load(f) ps_matrix_row = ps_matrix.tocsr() return get_best_tid(list_tid, ps_matrix.tocsr(), K, MAX_tid) def inference_from_uri(list_uri, K=50, MAX_tid=10): with open('model/dict_uri2tid.pkl', 'rb') as f: dict_uri2tid = pickle.load(f) list_tid = [dict_uri2tid[x] for x in list_uri if x in dict_uri2tid] best_tid = inference_from_tid(list_tid, K, MAX_tid) with open('model/dict_tid2uri.pkl', 'rb') as f: dict_tid2uri = pickle.load(f) best_uri = [dict_tid2uri[x] for x in best_tid] return best_uri