File size: 1,645 Bytes
c02d24a
 
 
 
 
 
 
 
 
f4f347c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
---
title: README
emoji: 📚
colorFrom: purple
colorTo: green
sdk: static
pinned: false
---

### Yapılan proje adımları aşağıda yer almaktadır.

  ![plot](/img/akış.drawio.png)
  
The steps to create this dataset are as follows.

  - Step 1: Data Scraping Tool: https://github.com/Teknofest-Nane-Limon/twitter-scraper
  
  - Step 2: Data Labeling Tool: https://github.com/Teknofest-Nane-Limon/easy-data-labeling-engine
    - Productization of labeled data: https://huggingface.co/datasets/nanelimon/turkish-social-media-bullying-dataset
  
  - Step 3: Data Cleaning Tool: https://github.com/Teknofest-Nane-Limon/text-data-cleaner
  
  - Step 4: Data Modeling:
    - 4.1. Analysis and trials notebook for TFID: https://github.com/Teknofest-Nane-Limon/tfidf-model-turkish-bullying
    - 4.2 Analysis and essays notebook for Bert Mobel: https://github.com/Teknofest-Nane-Limon/bert-base-turkish-bullying/blob/main/bert-cv.ipynb%20-%20Colaboratory.pdf & bert-cv.ipynb
    - 4.3 Modeling notebook with hyper parameters from Bert Model: https://github.com/Teknofest-Nane-Limon/bert-base-turkish-bullying/blob/main/bert-base-turkish-bullying-best-parameter.ipynb 
  
  - Step 5: Productization of the Model:
    - 5.1 Python FastAPI: https://github.com/Teknofest-Nane-Limon/turkish-bullying-api
    - 5.2 Hugging Face : https://huggingface.co/nanelimon/bert-base-turkish-bullying
    
    
  ## For Example
  > Cinsiyetçilik Örneği:
    ![plot](/img/Cinsiyetçilik.jpeg)
  > Irkçılık Örneği:
    ![plot](/img/Irkçılık.jpeg)
  > Kızdırma Örneği:
    ![plot](/img/Kızdırma.jpeg)
  > Nötr Örneği
    ![plot](/img/Nötr.jpeg)