Spaces:
Running
Running
File size: 6,127 Bytes
f2c15d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
from typing import Optional, Union
import einops
import torch
import torch.nn as nn
import torch.nn.functional as F
class Attention(nn.Module):
"""
Minimal multi-head attention layer.
"""
def __init__(
self,
d_model: int,
n_heads: int,
device: Optional[Union[str, torch.device]] = None,
dtype: Optional[torch.dtype] = None,
):
super().__init__()
self.d_model = d_model
self.n_heads = n_heads
factory_kwargs = {"device": device, "dtype": dtype}
self.d_head, remainder = divmod(self.d_model, self.n_heads)
assert not remainder, f"{n_heads=} must divide {d_model=} evenly"
self.lin_qkv = nn.Linear(
self.d_model,
3 * self.d_model,
**factory_kwargs,
)
self.lin_out = nn.Linear(self.d_model, self.d_model, **factory_kwargs)
def forward(
self,
inputs: torch.Tensor,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
bsz, seq_len, _ = inputs.size()
# Create the queries, keys, values
qkv = einops.rearrange(
self.lin_qkv(inputs),
"b s (three n_h d_h) -> three b s n_h d_h",
b=bsz,
s=seq_len,
three=3,
n_h=self.n_heads,
d_h=self.d_head,
)
q, k, v = qkv
bsz, seq_len, n_heads, d_head = q.shape
shape_kwargs = dict(b=bsz, n_h=n_heads, s=seq_len, d_h=d_head)
q = einops.rearrange(q, "b s n_h d_h -> b n_h s d_h", **shape_kwargs)
k = einops.rearrange(k, "b s n_h d_h -> b n_h s d_h", **shape_kwargs)
v = einops.rearrange(v, "b s n_h d_h -> b n_h s d_h", **shape_kwargs)
# Multi-head self-attention
attn_output = F.scaled_dot_product_attention(q, k, v, is_causal=True)
attn_output = einops.rearrange(
attn_output,
"b n_h s d_h -> b s (n_h d_h)",
b=bsz,
n_h=n_heads,
s=seq_len,
d_h=d_head,
)
# Final projection
out = self.lin_out(attn_output)
return out
class MLP(nn.Module):
"""
Basic MLP layer with optional Dropout.
"""
def __init__(
self,
d_model: int,
act_fn: nn.Module,
dropout_prob: Optional[float] = None,
device: Optional[Union[str, torch.device]] = None,
dtype: Optional[torch.dtype] = None,
) -> None:
super().__init__()
print(f"Shapes: d_model: {d_model}, act_fn: {act_fn}, dropout_prob: {dropout_prob}, device: {device}, dtype: {dtype}")
self.d_model = d_model
self.act_fn = act_fn
self.dropout_prob = dropout_prob
factory_kwargs = {"device": device, "dtype": dtype}
self.lin_0 = nn.Linear(self.d_model, 4 * self.d_model, **factory_kwargs)
self.lin_1 = nn.Linear(4 * self.d_model, self.d_model, **factory_kwargs)
self.dropout = nn.Dropout(self.dropout_prob) if self.dropout_prob else None
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
x = self.lin_0(inputs)
x = self.act_fn(x)
x = self.lin_1(x)
if self.dropout is not None:
x = self.dropout(x)
return x
class SwiGLUMLP(nn.Module):
"""
Llama 3 SwiGLU MLP layer with optional Dropout.
"""
def __init__(
self,
d_model: int,
intermediate_size: int,
act_fn: nn.Module,
dropout_prob: Optional[float] = None,
device: Optional[Union[str, torch.device]] = None,
dtype: Optional[torch.dtype] = None,
) -> None:
super().__init__()
print(f"Shapes: d_model: {d_model}, intermediate_size: {intermediate_size}, act_fn: {act_fn}, dropout_prob: {dropout_prob}, device: {device}, dtype: {dtype}")
self.d_model = d_model
self.intermediate_size = intermediate_size
self.act_fn = act_fn
self.dropout_prob = dropout_prob
factory_kwargs = {"device": device, "dtype": dtype}
self.gate_proj = nn.Linear(self.d_model, self.intermediate_size, **factory_kwargs)
self.up_proj = nn.Linear(self.d_model, self.intermediate_size, **factory_kwargs)
self.down_proj = nn.Linear(self.intermediate_size, self.d_model, **factory_kwargs)
self.dropout = nn.Dropout(self.dropout_prob) if self.dropout_prob else None
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
x = self.down_proj(self.act_fn(self.gate_proj(inputs)) * self.up_proj(inputs))
if self.dropout is not None:
x = self.dropout(x)
return x
class Block(nn.Module):
"""
Basic transformer block.
Schematic:
ββββββββ
βinputsβ
ββ¬ββ¬ββββ
βββ½ββββββββββββ
ββnorm_0, attnβ
βββ¬ββββββββββββ
ββ½ββ½βββ
β add β
ββ¬ββ¬βββ
βββ½βββββββββββ
ββnorm_1, mlpβ
βββ¬βββββββββββ
ββ½ββ½βββ
β add β
ββ¬βββββ
ββ½βββββββ
βoutputsβ
βββββββββ
"""
def __init__(
self,
d_model: int,
n_heads: int,
act_fn: nn.Module,
dropout_prob: Optional[float] = None,
dtype: Optional[torch.dtype] = None,
device: Optional[Union[str, torch.device]] = None,
):
super().__init__()
factory_kwargs = {"device": device, "dtype": dtype}
self.attn = Attention(d_model=d_model, n_heads=n_heads, **factory_kwargs)
self.mlp = MLP(d_model=d_model, act_fn=act_fn, dropout_prob=dropout_prob, **factory_kwargs)
self.norm_0 = nn.LayerNorm(d_model, **factory_kwargs)
self.norm_1 = nn.LayerNorm(d_model, **factory_kwargs)
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
outputs = self.attn(self.norm_0(inputs)) + inputs
outputs = self.mlp(self.norm_1(outputs)) + outputs
return outputs
|