File size: 6,127 Bytes
f2c15d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
from typing import Optional, Union

import einops
import torch
import torch.nn as nn
import torch.nn.functional as F


class Attention(nn.Module):
    """
    Minimal multi-head attention layer.
    """

    def __init__(
        self,
        d_model: int,
        n_heads: int,
        device: Optional[Union[str, torch.device]] = None,
        dtype: Optional[torch.dtype] = None,
    ):
        super().__init__()
        self.d_model = d_model
        self.n_heads = n_heads
        factory_kwargs = {"device": device, "dtype": dtype}

        self.d_head, remainder = divmod(self.d_model, self.n_heads)
        assert not remainder, f"{n_heads=} must divide {d_model=} evenly"

        self.lin_qkv = nn.Linear(
            self.d_model,
            3 * self.d_model,
            **factory_kwargs,
        )

        self.lin_out = nn.Linear(self.d_model, self.d_model, **factory_kwargs)

    def forward(
        self,
        inputs: torch.Tensor,
    ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        bsz, seq_len, _ = inputs.size()

        # Create the queries, keys, values
        qkv = einops.rearrange(
            self.lin_qkv(inputs),
            "b s (three n_h d_h) -> three b s n_h d_h",
            b=bsz,
            s=seq_len,
            three=3,
            n_h=self.n_heads,
            d_h=self.d_head,
        )
        q, k, v = qkv

        bsz, seq_len, n_heads, d_head = q.shape

        shape_kwargs = dict(b=bsz, n_h=n_heads, s=seq_len, d_h=d_head)
        q = einops.rearrange(q, "b s n_h d_h -> b n_h s d_h", **shape_kwargs)
        k = einops.rearrange(k, "b s n_h d_h -> b n_h s d_h", **shape_kwargs)
        v = einops.rearrange(v, "b s n_h d_h -> b n_h s d_h", **shape_kwargs)

        # Multi-head self-attention
        attn_output = F.scaled_dot_product_attention(q, k, v, is_causal=True)
        attn_output = einops.rearrange(
            attn_output,
            "b n_h s d_h -> b s (n_h d_h)",
            b=bsz,
            n_h=n_heads,
            s=seq_len,
            d_h=d_head,
        )

        # Final projection
        out = self.lin_out(attn_output)

        return out


class MLP(nn.Module):
    """
    Basic MLP layer with optional Dropout.
    """

    def __init__(
        self,
        d_model: int,
        act_fn: nn.Module,
        dropout_prob: Optional[float] = None,
        device: Optional[Union[str, torch.device]] = None,
        dtype: Optional[torch.dtype] = None,
    ) -> None:
        super().__init__()
        print(f"Shapes: d_model: {d_model}, act_fn: {act_fn}, dropout_prob: {dropout_prob}, device: {device}, dtype: {dtype}")
        self.d_model = d_model
        self.act_fn = act_fn
        self.dropout_prob = dropout_prob
        factory_kwargs = {"device": device, "dtype": dtype}

        self.lin_0 = nn.Linear(self.d_model, 4 * self.d_model, **factory_kwargs)
        self.lin_1 = nn.Linear(4 * self.d_model, self.d_model, **factory_kwargs)
        self.dropout = nn.Dropout(self.dropout_prob) if self.dropout_prob else None

    def forward(self, inputs: torch.Tensor) -> torch.Tensor:
        x = self.lin_0(inputs)
        x = self.act_fn(x)
        x = self.lin_1(x)
        if self.dropout is not None:
            x = self.dropout(x)
        return x


class SwiGLUMLP(nn.Module):
    """
    Llama 3 SwiGLU MLP layer with optional Dropout.
    """

    def __init__(
        self,
        d_model: int,
        intermediate_size: int,
        act_fn: nn.Module,
        dropout_prob: Optional[float] = None,
        device: Optional[Union[str, torch.device]] = None,
        dtype: Optional[torch.dtype] = None,
    ) -> None:
        super().__init__()
        print(f"Shapes: d_model: {d_model}, intermediate_size: {intermediate_size}, act_fn: {act_fn}, dropout_prob: {dropout_prob}, device: {device}, dtype: {dtype}")
        self.d_model = d_model
        self.intermediate_size = intermediate_size
        self.act_fn = act_fn
        self.dropout_prob = dropout_prob
        factory_kwargs = {"device": device, "dtype": dtype}

        self.gate_proj = nn.Linear(self.d_model, self.intermediate_size, **factory_kwargs)
        self.up_proj = nn.Linear(self.d_model, self.intermediate_size, **factory_kwargs)
        self.down_proj = nn.Linear(self.intermediate_size, self.d_model, **factory_kwargs)
        self.dropout = nn.Dropout(self.dropout_prob) if self.dropout_prob else None

    def forward(self, inputs: torch.Tensor) -> torch.Tensor:
        x = self.down_proj(self.act_fn(self.gate_proj(inputs)) * self.up_proj(inputs))
        if self.dropout is not None:
            x = self.dropout(x)
        return x


class Block(nn.Module):
    """
    Basic transformer block.

    Schematic:
    β”Œβ”€β”€β”€β”€β”€β”€β”
    β”‚inputsβ”‚
    β””β”¬β”€β”¬β”€β”€β”€β”˜
     β”‚β”Œβ–½β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
     β”‚β”‚norm_0, attnβ”‚
     β”‚β””β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
    β”Œβ–½β”€β–½β”€β”€β”
    β”‚ add β”‚
    β””β”¬β”€β”¬β”€β”€β”˜
     β”‚β”Œβ–½β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
     β”‚β”‚norm_1, mlpβ”‚
     β”‚β””β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
    β”Œβ–½β”€β–½β”€β”€β”
    β”‚ add β”‚
    β””β”¬β”€β”€β”€β”€β”˜
    β”Œβ–½β”€β”€β”€β”€β”€β”€β”
    β”‚outputsβ”‚
    β””β”€β”€β”€β”€β”€β”€β”€β”˜
    """

    def __init__(
        self,
        d_model: int,
        n_heads: int,
        act_fn: nn.Module,
        dropout_prob: Optional[float] = None,
        dtype: Optional[torch.dtype] = None,
        device: Optional[Union[str, torch.device]] = None,
    ):
        super().__init__()
        factory_kwargs = {"device": device, "dtype": dtype}
        self.attn = Attention(d_model=d_model, n_heads=n_heads, **factory_kwargs)
        self.mlp = MLP(d_model=d_model, act_fn=act_fn, dropout_prob=dropout_prob, **factory_kwargs)
        self.norm_0 = nn.LayerNorm(d_model, **factory_kwargs)
        self.norm_1 = nn.LayerNorm(d_model, **factory_kwargs)

    def forward(self, inputs: torch.Tensor) -> torch.Tensor:
        outputs = self.attn(self.norm_0(inputs)) + inputs
        outputs = self.mlp(self.norm_1(outputs)) + outputs
        return outputs