Musa
commited on
Commit
·
f6a686e
1
Parent(s):
ba13912
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,26 @@
|
|
|
|
|
|
|
|
|
|
1 |
from fastspeech2 import FastSpeech2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
voice_conversion_model = FastSpeech2.from_pretrained("path/to/pretrained/voice_conversion_model")
|
|
|
3 |
def convert_voice(text):
|
4 |
converted_voice = voice_conversion_model(text)
|
5 |
return converted_voice
|
@@ -12,7 +33,7 @@ def transcribe(microphone, state, task="transcribe"):
|
|
12 |
text = pipe(file)["text"]
|
13 |
converted_voice = convert_voice(text)
|
14 |
|
15 |
-
return state + "\n" + converted_voice, state + "\n" + converted_voice
|
16 |
|
17 |
mf_transcribe = gr.Interface(
|
18 |
fn=transcribe,
|
@@ -31,8 +52,10 @@ mf_transcribe = gr.Interface(
|
|
31 |
live=True,
|
32 |
description=(
|
33 |
"Transcribe long-form microphone or audio inputs and convert the voice with the click of a button! Demo uses the"
|
34 |
-
f" checkpoint
|
35 |
" of arbitrary length and FastSpeech2 for voice conversion."
|
36 |
),
|
37 |
allow_flagging="never",
|
38 |
)
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
import pytube as pt
|
4 |
+
from transformers import pipeline
|
5 |
from fastspeech2 import FastSpeech2
|
6 |
+
|
7 |
+
MODEL_NAME = "openai/whisper-large-v2"
|
8 |
+
|
9 |
+
device = 0 if torch.cuda.is_available() else "cpu"
|
10 |
+
|
11 |
+
pipe = pipeline(
|
12 |
+
task="automatic-speech-recognition",
|
13 |
+
model=MODEL_NAME,
|
14 |
+
chunk_length_s=30,
|
15 |
+
device=device,
|
16 |
+
)
|
17 |
+
|
18 |
+
all_special_ids = pipe.tokenizer.all_special_ids
|
19 |
+
transcribe_token_id = all_special_ids[-5]
|
20 |
+
translate_token_id = all_special_ids[-6]
|
21 |
+
|
22 |
voice_conversion_model = FastSpeech2.from_pretrained("path/to/pretrained/voice_conversion_model")
|
23 |
+
|
24 |
def convert_voice(text):
|
25 |
converted_voice = voice_conversion_model(text)
|
26 |
return converted_voice
|
|
|
33 |
text = pipe(file)["text"]
|
34 |
converted_voice = convert_voice(text)
|
35 |
|
36 |
+
return state + "\n" + converted_voice, state + "\n" + converted_voice, converted_voice
|
37 |
|
38 |
mf_transcribe = gr.Interface(
|
39 |
fn=transcribe,
|
|
|
52 |
live=True,
|
53 |
description=(
|
54 |
"Transcribe long-form microphone or audio inputs and convert the voice with the click of a button! Demo uses the"
|
55 |
+
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
56 |
" of arbitrary length and FastSpeech2 for voice conversion."
|
57 |
),
|
58 |
allow_flagging="never",
|
59 |
)
|
60 |
+
|
61 |
+
mf_transcribe.launch(enable_queue=True)
|