Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,241 +1,241 @@
|
|
1 |
-
import torch
|
2 |
-
import gradio as gr
|
3 |
-
import spaces
|
4 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
-
import os
|
6 |
-
import re
|
7 |
-
from polyglot.detect import Detector
|
8 |
-
from nltk.translate.bleu_score import sentence_bleu
|
9 |
-
|
10 |
-
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
11 |
-
MODEL = "LLaMAX/
|
12 |
-
RELATIVE_MODEL="LLaMAX/
|
13 |
-
|
14 |
-
TITLE = "<h1><center>LLaMAX Translator</center></h1>"
|
15 |
-
|
16 |
-
|
17 |
-
model = AutoModelForCausalLM.from_pretrained(
|
18 |
-
MODEL,
|
19 |
-
torch_dtype=torch.float16,
|
20 |
-
device_map="auto")
|
21 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
22 |
-
|
23 |
-
|
24 |
-
def lang_detector(text):
|
25 |
-
min_chars = 5
|
26 |
-
if len(text) < min_chars:
|
27 |
-
return "Input text too short"
|
28 |
-
try:
|
29 |
-
detector = Detector(text).language
|
30 |
-
lang_info = str(detector)
|
31 |
-
code = re.search(r"name: (\w+)", lang_info).group(1)
|
32 |
-
return code
|
33 |
-
except Exception as e:
|
34 |
-
return f"ERROR:{str(e)}"
|
35 |
-
|
36 |
-
def Prompt_template(inst, prompt, query, src_language, trg_language):
|
37 |
-
inst = inst.format(src_language=src_language, trg_language=trg_language)
|
38 |
-
instruction = f"`{inst}`"
|
39 |
-
prompt = (
|
40 |
-
f'{prompt}'
|
41 |
-
f'### Instruction:\n{instruction}\n'
|
42 |
-
f'### Input:\n{query}\n### Response:'
|
43 |
-
)
|
44 |
-
return prompt
|
45 |
-
|
46 |
-
# Unfinished
|
47 |
-
def chunk_text():
|
48 |
-
pass
|
49 |
-
|
50 |
-
# Function to calculate BLEU score
|
51 |
-
def calculate_bleu_score(candidate: str, references: list):
|
52 |
-
candidate_tokens = candidate.split() # Tokenizing the candidate output
|
53 |
-
bleu_score = sentence_bleu(references, candidate_tokens) # Calculating BLEU score
|
54 |
-
return bleu_score
|
55 |
-
|
56 |
-
@spaces.GPU(duration=60)
|
57 |
-
def translate(
|
58 |
-
source_text: str,
|
59 |
-
source_lang: str,
|
60 |
-
target_lang: str,
|
61 |
-
inst: str,
|
62 |
-
prompt: str,
|
63 |
-
max_length: int,
|
64 |
-
temperature: float,
|
65 |
-
top_p: float,
|
66 |
-
rp: float):
|
67 |
-
|
68 |
-
print(f'Text is - {source_text}')
|
69 |
-
|
70 |
-
prompt = Prompt_template(inst, prompt, source_text, source_lang, target_lang)
|
71 |
-
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
|
72 |
-
|
73 |
-
generate_kwargs = dict(
|
74 |
-
input_ids=input_ids,
|
75 |
-
max_length=max_length,
|
76 |
-
do_sample=True,
|
77 |
-
temperature=temperature,
|
78 |
-
top_p=top_p,
|
79 |
-
repetition_penalty=rp,
|
80 |
-
)
|
81 |
-
|
82 |
-
outputs = model.generate(**generate_kwargs)
|
83 |
-
|
84 |
-
resp = tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
85 |
-
|
86 |
-
#yield resp[len(prompt):]
|
87 |
-
# Calculate BLEU score
|
88 |
-
'''
|
89 |
-
references = [
|
90 |
-
'this is a dog'.split(),
|
91 |
-
'it is dog'.split(),
|
92 |
-
'dog it is'.split(),
|
93 |
-
'a dog, it is'.split()
|
94 |
-
]
|
95 |
-
bleu_score = calculate_bleu_score(resp[len(prompt):], references) # Calculate BLEU score
|
96 |
-
'''
|
97 |
-
references = [resp[len(prompt):].split()] # Use the generated response as the reference
|
98 |
-
bleu_score = calculate_bleu_score(resp[len(prompt):], references) # Calculate BLEU score
|
99 |
-
|
100 |
-
yield resp[len(prompt):], bleu_score
|
101 |
-
|
102 |
-
CSS = """
|
103 |
-
h1 {
|
104 |
-
text-align: center;
|
105 |
-
display: block;
|
106 |
-
height: 10vh;
|
107 |
-
align-content: center;
|
108 |
-
font-family: Arial, Helvetica, sans-serif;
|
109 |
-
}
|
110 |
-
footer {
|
111 |
-
visibility: hidden;
|
112 |
-
}
|
113 |
-
font-family: Arial, Helvetica, sans-serif;
|
114 |
-
"""
|
115 |
-
|
116 |
-
LICENSE = """
|
117 |
-
Model: <a href="https://huggingface.co/LLaMAX/LLaMAX3-8B-Alpaca">LLaMAX3-8B-Alpaca</a>
|
118 |
-
"""
|
119 |
-
|
120 |
-
LANG_LIST = ['Akrikaans', 'Amharic', 'Arabic', 'Armenian', 'Assamese', 'Asturian', 'Azerbaijani', \
|
121 |
-
'Belarusian', 'Bengali', 'Bosnian', 'Bulgarian', 'Burmese', \
|
122 |
-
'Catalan', 'Cebuano', 'Simplified Chinese', 'Traditional Chinese', 'Croatian', 'Czech', \
|
123 |
-
'Danish', 'Dutch', 'English', 'Estonian', 'Filipino', 'Finnish', 'French', 'Fulah', \
|
124 |
-
'Galician', 'Ganda', 'Georgian', 'German', 'Greek', 'Gujarati', \
|
125 |
-
'Hausa', 'Hebrew', 'Hindi', 'Hungarian', \
|
126 |
-
'Icelandic', 'Igbo', 'Indonesian', 'Irish', 'Italian', \
|
127 |
-
'Japanese', 'Javanese', \
|
128 |
-
'Kabuverdianu', 'Kamba', 'Kannada', 'Kazakh', 'Khmer', 'Korean', 'Kyrgyz', \
|
129 |
-
'Lao', 'Latvian', 'Lingala', 'Lithuanian', 'Luo', 'Luxembourgish', \
|
130 |
-
'Macedonian', 'Malay', 'Malayalam', 'Maltese', 'Maori', 'Marathi', 'Mongolian', \
|
131 |
-
'Nepali', 'Northern', 'Norwegian', 'Nyanja', \
|
132 |
-
'Occitan', 'Oriya', 'Oromo', \
|
133 |
-
'Pashto', 'Persian', 'Polish', 'Portuguese', 'Punjabi', \
|
134 |
-
'Romanian', 'Russian', \
|
135 |
-
'Serbian', 'Shona', 'Sindhi', 'Slovak', 'Slovenian', 'Somali', 'Sorani', 'Spanish', 'Swahili', 'Swedish', \
|
136 |
-
'Tajik', 'Tamil', 'Telugu', 'Thai', 'Turkish', \
|
137 |
-
'Ukrainian', 'Umbundu', 'Urdu', 'Uzbek', \
|
138 |
-
'Vietnamese', 'Welsh', 'Wolof', 'Xhosa', 'Yoruba', 'Zulu']
|
139 |
-
|
140 |
-
chatbot = gr.Chatbot(height=600)
|
141 |
-
|
142 |
-
with gr.Blocks(theme="soft", css=CSS) as demo:
|
143 |
-
gr.Markdown(TITLE)
|
144 |
-
with gr.Row():
|
145 |
-
with gr.Column(scale=4):
|
146 |
-
source_text = gr.Textbox(
|
147 |
-
label="Văn bản gốc",
|
148 |
-
value="LLaMAX is a language model with powerful multilingual capabilities without loss instruction-following capabilities. "+\
|
149 |
-
"LLaMAX supports translation between more than 100 languages, "+\
|
150 |
-
"surpassing the performance of similarly scaled LLMs.",
|
151 |
-
lines=10,
|
152 |
-
)
|
153 |
-
output_text = gr.Textbox(
|
154 |
-
label="Văn bản đã được dịch",
|
155 |
-
lines=10,
|
156 |
-
show_copy_button=True,
|
157 |
-
)
|
158 |
-
|
159 |
-
bleu_score_output = gr.Textbox( # New holder area for BLEU score
|
160 |
-
label="BLEU Score",
|
161 |
-
lines=10,
|
162 |
-
interactive=False,
|
163 |
-
)
|
164 |
-
|
165 |
-
with gr.Column(scale=1):
|
166 |
-
source_lang = gr.Dropdown(
|
167 |
-
label="Ngôn ngữ nguồn",
|
168 |
-
value="English",
|
169 |
-
choices=LANG_LIST,
|
170 |
-
)
|
171 |
-
target_lang = gr.Dropdown(
|
172 |
-
label="Ngôn ngữ đích",
|
173 |
-
value="Vietnamese",
|
174 |
-
choices=LANG_LIST,
|
175 |
-
)
|
176 |
-
max_length = gr.Slider(
|
177 |
-
label="Độ dài tối đa",
|
178 |
-
minimum=512,
|
179 |
-
maximum=8192,
|
180 |
-
value=4000,
|
181 |
-
step=8,
|
182 |
-
)
|
183 |
-
temperature = gr.Slider(
|
184 |
-
label="Temperature",
|
185 |
-
minimum=0,
|
186 |
-
maximum=1,
|
187 |
-
value=0.3,
|
188 |
-
step=0.1,
|
189 |
-
)
|
190 |
-
top_p = gr.Slider(
|
191 |
-
label="top_p",
|
192 |
-
minimum=0.0,
|
193 |
-
maximum=1.0,
|
194 |
-
step=0.1,
|
195 |
-
value=1.0,
|
196 |
-
)
|
197 |
-
rp = gr.Slider(
|
198 |
-
label="Repetition penalty",
|
199 |
-
minimum=1.0,
|
200 |
-
maximum=2.0,
|
201 |
-
step=0.1,
|
202 |
-
value=1.2,
|
203 |
-
)
|
204 |
-
with gr.Accordion("Tùy chọn nâng cao", open=False):
|
205 |
-
inst = gr.Textbox(
|
206 |
-
label="Instruction",
|
207 |
-
value="Translate the following sentences from {src_language} to {trg_language}.",
|
208 |
-
lines=3,
|
209 |
-
)
|
210 |
-
prompt = gr.Textbox(
|
211 |
-
label="Prompt",
|
212 |
-
# Prompt 1
|
213 |
-
#value="""Below is an instruction that describes a task, paired with an input that provides further context.
|
214 |
-
#Write a response that appropriately completes the request.
|
215 |
-
### Instruction:
|
216 |
-
#{instruction}
|
217 |
-
### Input:
|
218 |
-
#{query}
|
219 |
-
### Response:""",#
|
220 |
-
# Prompt 2
|
221 |
-
value="""Below is an instruction that describes a task, paired with an input that provides further context.
|
222 |
-
Write a response that ensuring accuracy and maintaining the tone and style of the original text.
|
223 |
-
### Instruction:
|
224 |
-
{instruction}
|
225 |
-
### Input:
|
226 |
-
{query}
|
227 |
-
### Response:""",
|
228 |
-
lines=8,
|
229 |
-
)
|
230 |
-
|
231 |
-
with gr.Row():
|
232 |
-
submit = gr.Button(value="Submit")
|
233 |
-
clear = gr.ClearButton([source_text, output_text])
|
234 |
-
gr.Markdown(LICENSE)
|
235 |
-
|
236 |
-
#source_text.change(lang_detector, source_text, source_lang)
|
237 |
-
#submit.click(fn=translate, inputs=[source_text, source_lang, target_lang, inst, prompt, max_length, temperature, top_p, rp], outputs=[output_text])
|
238 |
-
submit.click(fn=translate, inputs=[source_text, source_lang, target_lang, inst, prompt, max_length, temperature, top_p, rp], outputs=[output_text, bleu_score_output])
|
239 |
-
|
240 |
-
if __name__ == "__main__":
|
241 |
demo.launch()
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
import spaces
|
4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
+
import os
|
6 |
+
import re
|
7 |
+
from polyglot.detect import Detector
|
8 |
+
from nltk.translate.bleu_score import sentence_bleu
|
9 |
+
|
10 |
+
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
11 |
+
MODEL = "LLaMAX/LLaMAX2-7B-Alpaca"
|
12 |
+
RELATIVE_MODEL="LLaMAX/LLaMAX2-7B"
|
13 |
+
|
14 |
+
TITLE = "<h1><center>LLaMAX Translator</center></h1>"
|
15 |
+
|
16 |
+
|
17 |
+
model = AutoModelForCausalLM.from_pretrained(
|
18 |
+
MODEL,
|
19 |
+
torch_dtype=torch.float16,
|
20 |
+
device_map="auto")
|
21 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
22 |
+
|
23 |
+
|
24 |
+
def lang_detector(text):
|
25 |
+
min_chars = 5
|
26 |
+
if len(text) < min_chars:
|
27 |
+
return "Input text too short"
|
28 |
+
try:
|
29 |
+
detector = Detector(text).language
|
30 |
+
lang_info = str(detector)
|
31 |
+
code = re.search(r"name: (\w+)", lang_info).group(1)
|
32 |
+
return code
|
33 |
+
except Exception as e:
|
34 |
+
return f"ERROR:{str(e)}"
|
35 |
+
|
36 |
+
def Prompt_template(inst, prompt, query, src_language, trg_language):
|
37 |
+
inst = inst.format(src_language=src_language, trg_language=trg_language)
|
38 |
+
instruction = f"`{inst}`"
|
39 |
+
prompt = (
|
40 |
+
f'{prompt}'
|
41 |
+
f'### Instruction:\n{instruction}\n'
|
42 |
+
f'### Input:\n{query}\n### Response:'
|
43 |
+
)
|
44 |
+
return prompt
|
45 |
+
|
46 |
+
# Unfinished
|
47 |
+
def chunk_text():
|
48 |
+
pass
|
49 |
+
|
50 |
+
# Function to calculate BLEU score
|
51 |
+
def calculate_bleu_score(candidate: str, references: list):
|
52 |
+
candidate_tokens = candidate.split() # Tokenizing the candidate output
|
53 |
+
bleu_score = sentence_bleu(references, candidate_tokens) # Calculating BLEU score
|
54 |
+
return bleu_score
|
55 |
+
|
56 |
+
@spaces.GPU(duration=60)
|
57 |
+
def translate(
|
58 |
+
source_text: str,
|
59 |
+
source_lang: str,
|
60 |
+
target_lang: str,
|
61 |
+
inst: str,
|
62 |
+
prompt: str,
|
63 |
+
max_length: int,
|
64 |
+
temperature: float,
|
65 |
+
top_p: float,
|
66 |
+
rp: float):
|
67 |
+
|
68 |
+
print(f'Text is - {source_text}')
|
69 |
+
|
70 |
+
prompt = Prompt_template(inst, prompt, source_text, source_lang, target_lang)
|
71 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
|
72 |
+
|
73 |
+
generate_kwargs = dict(
|
74 |
+
input_ids=input_ids,
|
75 |
+
max_length=max_length,
|
76 |
+
do_sample=True,
|
77 |
+
temperature=temperature,
|
78 |
+
top_p=top_p,
|
79 |
+
repetition_penalty=rp,
|
80 |
+
)
|
81 |
+
|
82 |
+
outputs = model.generate(**generate_kwargs)
|
83 |
+
|
84 |
+
resp = tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
85 |
+
|
86 |
+
#yield resp[len(prompt):]
|
87 |
+
# Calculate BLEU score
|
88 |
+
'''
|
89 |
+
references = [
|
90 |
+
'this is a dog'.split(),
|
91 |
+
'it is dog'.split(),
|
92 |
+
'dog it is'.split(),
|
93 |
+
'a dog, it is'.split()
|
94 |
+
]
|
95 |
+
bleu_score = calculate_bleu_score(resp[len(prompt):], references) # Calculate BLEU score
|
96 |
+
'''
|
97 |
+
references = [resp[len(prompt):].split()] # Use the generated response as the reference
|
98 |
+
bleu_score = calculate_bleu_score(resp[len(prompt):], references) # Calculate BLEU score
|
99 |
+
|
100 |
+
yield resp[len(prompt):], bleu_score
|
101 |
+
|
102 |
+
CSS = """
|
103 |
+
h1 {
|
104 |
+
text-align: center;
|
105 |
+
display: block;
|
106 |
+
height: 10vh;
|
107 |
+
align-content: center;
|
108 |
+
font-family: Arial, Helvetica, sans-serif;
|
109 |
+
}
|
110 |
+
footer {
|
111 |
+
visibility: hidden;
|
112 |
+
}
|
113 |
+
font-family: Arial, Helvetica, sans-serif;
|
114 |
+
"""
|
115 |
+
|
116 |
+
LICENSE = """
|
117 |
+
Model: <a href="https://huggingface.co/LLaMAX/LLaMAX3-8B-Alpaca">LLaMAX3-8B-Alpaca</a>
|
118 |
+
"""
|
119 |
+
|
120 |
+
LANG_LIST = ['Akrikaans', 'Amharic', 'Arabic', 'Armenian', 'Assamese', 'Asturian', 'Azerbaijani', \
|
121 |
+
'Belarusian', 'Bengali', 'Bosnian', 'Bulgarian', 'Burmese', \
|
122 |
+
'Catalan', 'Cebuano', 'Simplified Chinese', 'Traditional Chinese', 'Croatian', 'Czech', \
|
123 |
+
'Danish', 'Dutch', 'English', 'Estonian', 'Filipino', 'Finnish', 'French', 'Fulah', \
|
124 |
+
'Galician', 'Ganda', 'Georgian', 'German', 'Greek', 'Gujarati', \
|
125 |
+
'Hausa', 'Hebrew', 'Hindi', 'Hungarian', \
|
126 |
+
'Icelandic', 'Igbo', 'Indonesian', 'Irish', 'Italian', \
|
127 |
+
'Japanese', 'Javanese', \
|
128 |
+
'Kabuverdianu', 'Kamba', 'Kannada', 'Kazakh', 'Khmer', 'Korean', 'Kyrgyz', \
|
129 |
+
'Lao', 'Latvian', 'Lingala', 'Lithuanian', 'Luo', 'Luxembourgish', \
|
130 |
+
'Macedonian', 'Malay', 'Malayalam', 'Maltese', 'Maori', 'Marathi', 'Mongolian', \
|
131 |
+
'Nepali', 'Northern', 'Norwegian', 'Nyanja', \
|
132 |
+
'Occitan', 'Oriya', 'Oromo', \
|
133 |
+
'Pashto', 'Persian', 'Polish', 'Portuguese', 'Punjabi', \
|
134 |
+
'Romanian', 'Russian', \
|
135 |
+
'Serbian', 'Shona', 'Sindhi', 'Slovak', 'Slovenian', 'Somali', 'Sorani', 'Spanish', 'Swahili', 'Swedish', \
|
136 |
+
'Tajik', 'Tamil', 'Telugu', 'Thai', 'Turkish', \
|
137 |
+
'Ukrainian', 'Umbundu', 'Urdu', 'Uzbek', \
|
138 |
+
'Vietnamese', 'Welsh', 'Wolof', 'Xhosa', 'Yoruba', 'Zulu']
|
139 |
+
|
140 |
+
chatbot = gr.Chatbot(height=600)
|
141 |
+
|
142 |
+
with gr.Blocks(theme="soft", css=CSS) as demo:
|
143 |
+
gr.Markdown(TITLE)
|
144 |
+
with gr.Row():
|
145 |
+
with gr.Column(scale=4):
|
146 |
+
source_text = gr.Textbox(
|
147 |
+
label="Văn bản gốc",
|
148 |
+
value="LLaMAX is a language model with powerful multilingual capabilities without loss instruction-following capabilities. "+\
|
149 |
+
"LLaMAX supports translation between more than 100 languages, "+\
|
150 |
+
"surpassing the performance of similarly scaled LLMs.",
|
151 |
+
lines=10,
|
152 |
+
)
|
153 |
+
output_text = gr.Textbox(
|
154 |
+
label="Văn bản đã được dịch",
|
155 |
+
lines=10,
|
156 |
+
show_copy_button=True,
|
157 |
+
)
|
158 |
+
|
159 |
+
bleu_score_output = gr.Textbox( # New holder area for BLEU score
|
160 |
+
label="BLEU Score",
|
161 |
+
lines=10,
|
162 |
+
interactive=False,
|
163 |
+
)
|
164 |
+
|
165 |
+
with gr.Column(scale=1):
|
166 |
+
source_lang = gr.Dropdown(
|
167 |
+
label="Ngôn ngữ nguồn",
|
168 |
+
value="English",
|
169 |
+
choices=LANG_LIST,
|
170 |
+
)
|
171 |
+
target_lang = gr.Dropdown(
|
172 |
+
label="Ngôn ngữ đích",
|
173 |
+
value="Vietnamese",
|
174 |
+
choices=LANG_LIST,
|
175 |
+
)
|
176 |
+
max_length = gr.Slider(
|
177 |
+
label="Độ dài tối đa",
|
178 |
+
minimum=512,
|
179 |
+
maximum=8192,
|
180 |
+
value=4000,
|
181 |
+
step=8,
|
182 |
+
)
|
183 |
+
temperature = gr.Slider(
|
184 |
+
label="Temperature",
|
185 |
+
minimum=0,
|
186 |
+
maximum=1,
|
187 |
+
value=0.3,
|
188 |
+
step=0.1,
|
189 |
+
)
|
190 |
+
top_p = gr.Slider(
|
191 |
+
label="top_p",
|
192 |
+
minimum=0.0,
|
193 |
+
maximum=1.0,
|
194 |
+
step=0.1,
|
195 |
+
value=1.0,
|
196 |
+
)
|
197 |
+
rp = gr.Slider(
|
198 |
+
label="Repetition penalty",
|
199 |
+
minimum=1.0,
|
200 |
+
maximum=2.0,
|
201 |
+
step=0.1,
|
202 |
+
value=1.2,
|
203 |
+
)
|
204 |
+
with gr.Accordion("Tùy chọn nâng cao", open=False):
|
205 |
+
inst = gr.Textbox(
|
206 |
+
label="Instruction",
|
207 |
+
value="Translate the following sentences from {src_language} to {trg_language}.",
|
208 |
+
lines=3,
|
209 |
+
)
|
210 |
+
prompt = gr.Textbox(
|
211 |
+
label="Prompt",
|
212 |
+
# Prompt 1
|
213 |
+
#value="""Below is an instruction that describes a task, paired with an input that provides further context.
|
214 |
+
#Write a response that appropriately completes the request.
|
215 |
+
### Instruction:
|
216 |
+
#{instruction}
|
217 |
+
### Input:
|
218 |
+
#{query}
|
219 |
+
### Response:""",#
|
220 |
+
# Prompt 2
|
221 |
+
value="""Below is an instruction that describes a task, paired with an input that provides further context.
|
222 |
+
Write a response that ensuring accuracy and maintaining the tone and style of the original text.
|
223 |
+
### Instruction:
|
224 |
+
{instruction}
|
225 |
+
### Input:
|
226 |
+
{query}
|
227 |
+
### Response:""",
|
228 |
+
lines=8,
|
229 |
+
)
|
230 |
+
|
231 |
+
with gr.Row():
|
232 |
+
submit = gr.Button(value="Submit")
|
233 |
+
clear = gr.ClearButton([source_text, output_text])
|
234 |
+
gr.Markdown(LICENSE)
|
235 |
+
|
236 |
+
#source_text.change(lang_detector, source_text, source_lang)
|
237 |
+
#submit.click(fn=translate, inputs=[source_text, source_lang, target_lang, inst, prompt, max_length, temperature, top_p, rp], outputs=[output_text])
|
238 |
+
submit.click(fn=translate, inputs=[source_text, source_lang, target_lang, inst, prompt, max_length, temperature, top_p, rp], outputs=[output_text, bleu_score_output])
|
239 |
+
|
240 |
+
if __name__ == "__main__":
|
241 |
demo.launch()
|