Spaces:
Sleeping
Sleeping
File size: 9,215 Bytes
bbe0b27 231ac24 bbe0b27 231ac24 bbe0b27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import streamlit as st
import os
import pickle
import faiss
import logging
from multiprocessing import Lock
from multiprocessing.managers import BaseManager
from llama_index.callbacks import CallbackManager, LlamaDebugHandler
from llama_index import VectorStoreIndex, Document,Prompt, SimpleDirectoryReader, ServiceContext, StorageContext, load_index_from_storage
from llama_index.chat_engine import CondenseQuestionChatEngine;
from llama_index.node_parser import SimpleNodeParser
from llama_index.langchain_helpers.text_splitter import TokenTextSplitter
from llama_index.constants import DEFAULT_CHUNK_OVERLAP
from llama_index.response_synthesizers import get_response_synthesizer
from llama_index.vector_stores.faiss import FaissVectorStore
from llama_index.graph_stores import SimpleGraphStore
from llama_index.storage.docstore import SimpleDocumentStore
from llama_index.storage.index_store import SimpleIndexStore
import tiktoken
from streamlit import runtime
from streamlit.runtime.scriptrunner import get_script_run_ctx
import ipaddress
from requests_oauthlib import OAuth2Session
from time import time
from dotenv import load_dotenv
from streamlit import net_util
load_dotenv()
# 接続元制御
ALLOW_IP_ADDRESS = os.environ["ALLOW_IP_ADDRESS"]
# Azure AD app registration details
CLIENT_ID = os.environ["CLIENT_ID"]
CLIENT_SECRET = os.environ["CLIENT_SECRET"]
TENANT_ID = os.environ["TENANT_ID"]
# Azure API
AUTHORITY = f"https://login.microsoftonline.com/{TENANT_ID}"
REDIRECT_PATH = os.environ["REDIRECT_PATH"]
TOKEN_URL = f"{AUTHORITY}/oauth2/v2.0/token"
AUTHORIZATION_URL = f"{AUTHORITY}/oauth2/v2.0/authorize"
SCOPES = ["openid", "profile", "User.Read"]
# 認証用URL取得
def authorization_request():
oauth = OAuth2Session(CLIENT_ID, redirect_uri=REDIRECT_PATH, scope=SCOPES)
authorization_url, state = oauth.authorization_url(AUTHORIZATION_URL)
return authorization_url, state
# 認証トークン取得
def token_request(authorization_response, state):
oauth = OAuth2Session(CLIENT_ID, state=state)
token = oauth.fetch_token(
TOKEN_URL,
code=authorization_response[0],
authorization_response=authorization_response,
client_secret=CLIENT_SECRET,
)
return token
index_name = "./data/storage"
pkl_name = "./data/stored_documents.pkl"
custom_prompt = Prompt("""\
以下はこれまでの会話履歴と、ドキュメントを検索して回答する必要がある、ユーザーからの会話文です。
会話と新しい会話文に基づいて、検索クエリを作成します。回答は日本語で行います。
新しい会話文が挨拶の場合、挨拶を返してください。
新しい会話文が質問の場合、検索した結果の回答を返してください。
答えがわからない場合は正直にわからないと回答してください。
会話履歴:
{chat_history}
新しい会話文:
{question}
Search query:
""")
chat_history = []
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("__name__")
logger.debug("調査用ログ")
def initialize_index():
logger.info("initialize_index start")
text_splitter = TokenTextSplitter(separator="。", chunk_size=1500
, chunk_overlap=DEFAULT_CHUNK_OVERLAP
, tokenizer=tiktoken.encoding_for_model("gpt-3.5-turbo").encode)
node_parser = SimpleNodeParser(text_splitter=text_splitter)
d = 1536
k=2
faiss_index = faiss.IndexFlatL2(d)
# デバッグ用
llama_debug_handler = LlamaDebugHandler()
callback_manager = CallbackManager([llama_debug_handler])
service_context = ServiceContext.from_defaults(node_parser=node_parser,callback_manager=callback_manager)
lock = Lock()
with lock:
if os.path.exists(index_name):
storage_context = StorageContext.from_defaults(
docstore=SimpleDocumentStore.from_persist_dir(persist_dir=index_name),
graph_store=SimpleGraphStore.from_persist_dir(persist_dir=index_name),
vector_store=FaissVectorStore.from_persist_dir(persist_dir=index_name),
index_store=SimpleIndexStore.from_persist_dir(persist_dir=index_name),
)
st.session_state.index = load_index_from_storage(storage_context=storage_context,service_context=service_context)
response_synthesizer = get_response_synthesizer(response_mode='refine')
st.session_state.query_engine = st.session_state.index.as_query_engine(response_synthesizer=response_synthesizer,service_context=service_context)
st.session_state.chat_engine = CondenseQuestionChatEngine.from_defaults(
query_engine=st.session_state.query_engine,
condense_question_prompt=custom_prompt,
chat_history=chat_history,
verbose=True
)
else:
documents = SimpleDirectoryReader("./documents").load_data()
vector_store = FaissVectorStore(faiss_index=faiss_index)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
st.session_state.index = VectorStoreIndex.from_documents(documents, storage_context=storage_context,service_context=service_context)
st.session_state.index.storage_context.persist(persist_dir=index_name)
response_synthesizer = get_response_synthesizer(response_mode='refine')
st.session_state.query_engine = st.session_state.index.as_query_engine(response_synthesizer=response_synthesizer,service_context=service_context)
st.session_state.chat_engine = CondenseQuestionChatEngine.from_defaults(
query_engine=st.session_state.query_engine,
condense_question_prompt=custom_prompt,
chat_history=chat_history,
verbose=True
)
if os.path.exists(pkl_name):
with open(pkl_name, "rb") as f:
st.session_state.stored_docs = pickle.load(f)
else:
st.session_state.stored_docs=list()
# 接続元IP取得
def get_remote_ip():
ctx = get_script_run_ctx()
session_info = runtime.get_instance().get_client(ctx.session_id)
return session_info.request.remote_ip
# 接続元IP許可判定
def is_allow_ip_address():
remote_ip = get_remote_ip()
logger.info("remote_ip")
logger.info(remote_ip)
# localhost
if remote_ip == "::1":
return True
# プライベートIP
ipaddr = ipaddress.IPv4Address(remote_ip)
logger.info("ipaddr")
logger.info(ipaddr)
if ipaddr.is_private:
return True
# その他(許可リスト判定)
return remote_ip in ALLOW_IP_ADDRESS
def logout():
st.session_state["token"] = None
st.session_state["token_expires"] = None
st.session_state["authorization_state"] = None
# メイン
def app():
# 初期化
st.session_state["token"] = None
st.session_state["token_expires"] = time()
st.session_state["authorization_state"] = None
# 接続元IP許可判定
if not is_allow_ip_address():
st.title("HTTP 403 Forbidden")
return
# 接続元OK
st.title("Azure AD Login with Streamlit")
# 認証後のリダイレクトのGETパラメータ値を取得
authorization_response = st.experimental_get_query_params().get("code")
# 認証OK、トークン無し
if authorization_response and st.session_state["token"] is None:
# トークン設定
token = token_request(authorization_response, st.session_state["authorization_state"])
st.session_state["token"] = token
st.session_state["token_expires"] = token["expires_at"]
# トークン無し or 期限切れ
if st.session_state["token"] is None or float(st.session_state["token_expires"]) <= time():
# 認証用リンク表示
authorization_url, st.session_state["authorization_state"] = authorization_request()
st.markdown(f'[Click here to log in]({authorization_url})', unsafe_allow_html=True)
else:
# 認証OK
st.markdown(f"Logged in successfully. Welcome, {st.session_state['token']['token_type']}!")
if st.button("logout",use_container_width=True):
logout()
st.experimental_set_query_params()
st.experimental_rerun()
st.text("サイドバーから利用するメニューをお選びください。")
initialize_index()
if __name__ == "__main__":
if "token" not in st.session_state or st.session_state["token"] is None or float(st.session_state["token_expires"]) <= time():
app()
else:
st.title("Azure AD Login with Streamlit")
if st.button("logout",use_container_width=True):
logout()
st.experimental_set_query_params()
st.experimental_rerun()
st.text("ログイン済みです。")
st.text("サイドバーから利用するメニューをお選びください。")
|