File size: 6,313 Bytes
d14246a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac7c903
 
d14246a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ffd7f7
d14246a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

import streamlit as st
import os
import pickle
import faiss
import logging

from multiprocessing import Lock
from multiprocessing.managers import BaseManager
from llama_index.callbacks import CallbackManager, LlamaDebugHandler
from llama_index import VectorStoreIndex, Document,Prompt, SimpleDirectoryReader, ServiceContext, StorageContext, load_index_from_storage
from llama_index.chat_engine import CondenseQuestionChatEngine;
from llama_index.node_parser import SimpleNodeParser
from llama_index.langchain_helpers.text_splitter import TokenTextSplitter
from llama_index.constants import DEFAULT_CHUNK_OVERLAP
from llama_index.response_synthesizers import get_response_synthesizer
from llama_index.vector_stores.faiss import FaissVectorStore
from llama_index.graph_stores import SimpleGraphStore
from llama_index.storage.docstore import SimpleDocumentStore
from llama_index.storage.index_store import SimpleIndexStore
import tiktoken
from logging import getLogger, StreamHandler, Formatter

index_name = "./data/storage"
pkl_name = "/data/stored_documents.pkl"

custom_prompt = Prompt("""\
  以下はこれまでの会話履歴と、ドキュメントを検索して回答する必要がある、ユーザーからの会話文です。
  会話と新しい会話文に基づいて、検索クエリを作成します。回答は日本語で行います。
  新しい会話文が挨拶の場合、挨拶を返してください。
  新しい会話文が質問の場合、検索した結果の回答を返してください。
  答えがわからない場合は正直にわからないと回答してください。
  会話履歴:
  {chat_history}
  新しい会話文:
  {question}
  Search query:
""")

# # list of (human_message, ai_message) tuples
custom_chat_history = [
    (
        'こんにちは、アシスタント。これから質問に答えて下さい。',
        'こんにちは。了解しました。'
    )
]
chat_history = []

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("__name__")
logger.debug("調査用ログ")


st.title("💬 Chatbot")
if "messages" not in st.session_state:
    st.session_state["messages"] = [{"role": "assistant", "content": "お困りごとはございますか?"}]

for msg in st.session_state.messages:
    st.chat_message(msg["role"]).write(msg["content"])

if prompt := st.chat_input():
    st.session_state.messages.append({"role": "user", "content": prompt})
    st.chat_message("user").write(prompt)
    response = st.session_state.chat_engine.chat(prompt)
    # response = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=st.session_state.messages)
    msg = str(response)
    st.session_state.messages.append({"role": "assistant", "content": msg})
    st.chat_message("assistant").write(msg)

if st.button("リセット",use_container_width=True):
    st.session_state.chat_engine.reset()
    st.session_state.messages = [{"role": "assistant", "content": "お困りごとはございますか?"}]
    logger.info("reset")

def initialize_index():
    logger.info("initialize_index start")
    text_splitter = TokenTextSplitter(separator="。", chunk_size=1500
      , chunk_overlap=DEFAULT_CHUNK_OVERLAP
      , tokenizer=tiktoken.encoding_for_model("gpt-3.5-turbo").encode)
    node_parser = SimpleNodeParser(text_splitter=text_splitter)
    service_context = ServiceContext.from_defaults(node_parser=node_parser)
    d = 1536
    k=2
    faiss_index = faiss.IndexFlatL2(d)
    # デバッグ用
    llama_debug_handler = LlamaDebugHandler()
    callback_manager = CallbackManager([llama_debug_handler])
    service_context = ServiceContext.from_defaults(callback_manager=callback_manager)
    lock = Lock()
    with lock:
        if os.path.exists(index_name):
            storage_context = StorageContext.from_defaults(
              docstore=SimpleDocumentStore.from_persist_dir(persist_dir=index_name),
              graph_store=SimpleGraphStore.from_persist_dir(persist_dir=index_name),
              vector_store=FaissVectorStore.from_persist_dir(persist_dir=index_name),
              index_store=SimpleIndexStore.from_persist_dir(persist_dir=index_name),
            )
            st.session_state.index = load_index_from_storage(storage_context=storage_context,service_context=service_context)
            # index = load_index_from_storage(StorageContext.from_defaults(persist_dir=index_name), service_context=service_context)
            response_synthesizer = get_response_synthesizer(response_mode='refine')
            st.session_state.query_engine = st.session_state.index.as_query_engine(response_synthesizer=response_synthesizer)
            st.session_state.chat_engine = CondenseQuestionChatEngine.from_defaults(
                query_engine=st.session_state.query_engine, 
                condense_question_prompt=custom_prompt,
                chat_history=chat_history,
                verbose=True
            )
        else:
            documents = SimpleDirectoryReader("./documents").load_data()
            vector_store = FaissVectorStore(faiss_index=faiss_index)
            storage_context = StorageContext.from_defaults(vector_store=vector_store)
            st.session_state.index = VectorStoreIndex.from_documents(documents, storage_context=storage_context,service_context=service_context)
            st.session_state.index.storage_context.persist(persist_dir=index_name)
            response_synthesizer = get_response_synthesizer(response_mode='refine')
            st.session_state.query_engine = st.session_state.index.as_query_engine(response_synthesizer=response_synthesizer)
            st.session_state.chat_engine = CondenseQuestionChatEngine.from_defaults(
                query_engine=st.session_state.query_engine, 
                condense_question_prompt=custom_prompt,
                chat_history=chat_history,
                verbose=True
            )
        if os.path.exists(pkl_name):
            with open(pkl_name, "rb") as f:
                st.session_state.stored_docs = pickle.load(f)
        else:
            st.session_state.stored_docs=list()

if __name__ == "__main__":
    # init the global index
    logger.info("main start")
    if "chat_engine" not in st.session_state:
      initialize_index()
      logger.info("initializing index...")