qatool / Chatbot.py
naotakigawa's picture
init
d14246a
raw
history blame
6.29 kB
import streamlit as st
import os
import pickle
import faiss
import logging
from multiprocessing import Lock
from multiprocessing.managers import BaseManager
from llama_index.callbacks import CallbackManager, LlamaDebugHandler
from llama_index import VectorStoreIndex, Document,Prompt, SimpleDirectoryReader, ServiceContext, StorageContext, load_index_from_storage
from llama_index.chat_engine import CondenseQuestionChatEngine;
from llama_index.node_parser import SimpleNodeParser
from llama_index.langchain_helpers.text_splitter import TokenTextSplitter
from llama_index.constants import DEFAULT_CHUNK_OVERLAP
from llama_index.response_synthesizers import get_response_synthesizer
from llama_index.vector_stores.faiss import FaissVectorStore
from llama_index.graph_stores import SimpleGraphStore
from llama_index.storage.docstore import SimpleDocumentStore
from llama_index.storage.index_store import SimpleIndexStore
import tiktoken
from logging import getLogger, StreamHandler, Formatter
index_name = "./storage"
pkl_name = "stored_documents.pkl"
custom_prompt = Prompt("""\
以下はこれまでの会話履歴と、ドキュメントを検索して回答する必要がある、ユーザーからの会話文です。
会話と新しい会話文に基づいて、検索クエリを作成します。回答は日本語で行います。
新しい会話文が挨拶の場合、挨拶を返してください。
新しい会話文が質問の場合、検索した結果の回答を返してください。
答えがわからない場合は正直にわからないと回答してください。
会話履歴:
{chat_history}
新しい会話文:
{question}
Search query:
""")
# # list of (human_message, ai_message) tuples
custom_chat_history = [
(
'こんにちは、アシスタント。これから質問に答えて下さい。',
'こんにちは。了解しました。'
)
]
chat_history = []
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("__name__")
logger.debug("調査用ログ")
st.title("💬 Chatbot")
if "messages" not in st.session_state:
st.session_state["messages"] = [{"role": "assistant", "content": "お困りごとはございますか?"}]
for msg in st.session_state.messages:
st.chat_message(msg["role"]).write(msg["content"])
if prompt := st.chat_input():
st.session_state.messages.append({"role": "user", "content": prompt})
st.chat_message("user").write(prompt)
response = st.session_state.chat_engine.chat(prompt)
# response = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=st.session_state.messages)
msg = str(response)
st.session_state.messages.append({"role": "assistant", "content": msg})
st.chat_message("assistant").write(msg)
if st.button("リセット",use_container_width=True):
st.session_state.chat_engine.reset()
st.session_state.messages = [{"role": "assistant", "content": "お困りごとはございますか?"}]
logger.info("reset")
def initialize_index():
logger.info("initialize_index start")
text_splitter = TokenTextSplitter(separator="。", chunk_size=1500
, chunk_overlap=DEFAULT_CHUNK_OVERLAP
, tokenizer=tiktoken.get_encoding("gpt2").encode)
node_parser = SimpleNodeParser(text_splitter=text_splitter)
service_context = ServiceContext.from_defaults(node_parser=node_parser)
d = 1536
k=2
faiss_index = faiss.IndexFlatL2(d)
# デバッグ用
llama_debug_handler = LlamaDebugHandler()
callback_manager = CallbackManager([llama_debug_handler])
service_context = ServiceContext.from_defaults(callback_manager=callback_manager)
lock = Lock()
with lock:
if os.path.exists(index_name):
storage_context = StorageContext.from_defaults(
docstore=SimpleDocumentStore.from_persist_dir(persist_dir=index_name),
graph_store=SimpleGraphStore.from_persist_dir(persist_dir=index_name),
vector_store=FaissVectorStore.from_persist_dir(persist_dir=index_name),
index_store=SimpleIndexStore.from_persist_dir(persist_dir=index_name),
)
st.session_state.index = load_index_from_storage(storage_context=storage_context,service_context=service_context)
# index = load_index_from_storage(StorageContext.from_defaults(persist_dir=index_name), service_context=service_context)
response_synthesizer = get_response_synthesizer(response_mode='refine')
st.session_state.query_engine = st.session_state.index.as_query_engine(response_synthesizer=response_synthesizer)
st.session_state.chat_engine = CondenseQuestionChatEngine.from_defaults(
query_engine=st.session_state.query_engine,
condense_question_prompt=custom_prompt,
chat_history=chat_history,
verbose=True
)
else:
documents = SimpleDirectoryReader("./documents").load_data()
vector_store = FaissVectorStore(faiss_index=faiss_index)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
st.session_state.index = VectorStoreIndex.from_documents(documents, storage_context=storage_context,service_context=service_context)
st.session_state.index.storage_context.persist(persist_dir=index_name)
response_synthesizer = get_response_synthesizer(response_mode='refine')
st.session_state.query_engine = st.session_state.index.as_query_engine(response_synthesizer=response_synthesizer)
st.session_state.chat_engine = CondenseQuestionChatEngine.from_defaults(
query_engine=st.session_state.query_engine,
condense_question_prompt=custom_prompt,
chat_history=chat_history,
verbose=True
)
if os.path.exists(pkl_name):
with open(pkl_name, "rb") as f:
st.session_state.stored_docs = pickle.load(f)
else:
st.session_state.stored_docs=list()
if __name__ == "__main__":
# init the global index
logger.info("main start")
if "chat_engine" not in st.session_state:
initialize_index()
logger.info("initializing index...")