import streamlit as st import os import pickle import faiss import logging from multiprocessing import Lock from multiprocessing.managers import BaseManager from llama_index.callbacks import CallbackManager, LlamaDebugHandler from llama_index import VectorStoreIndex, Document,Prompt, SimpleDirectoryReader, ServiceContext, StorageContext, load_index_from_storage from llama_index.chat_engine import CondenseQuestionChatEngine; from llama_index.node_parser import SimpleNodeParser from llama_index.langchain_helpers.text_splitter import TokenTextSplitter from llama_index.constants import DEFAULT_CHUNK_OVERLAP from llama_index.response_synthesizers import get_response_synthesizer from llama_index.vector_stores.faiss import FaissVectorStore from llama_index.graph_stores import SimpleGraphStore from llama_index.storage.docstore import SimpleDocumentStore from llama_index.storage.index_store import SimpleIndexStore import tiktoken from logging import getLogger, StreamHandler, Formatter index_name = "./storage" pkl_name = "stored_documents.pkl" custom_prompt = Prompt("""\ 以下はこれまでの会話履歴と、ドキュメントを検索して回答する必要がある、ユーザーからの会話文です。 会話と新しい会話文に基づいて、検索クエリを作成します。回答は日本語で行います。 新しい会話文が挨拶の場合、挨拶を返してください。 新しい会話文が質問の場合、検索した結果の回答を返してください。 答えがわからない場合は正直にわからないと回答してください。 会話履歴: {chat_history} 新しい会話文: {question} Search query: """) # # list of (human_message, ai_message) tuples custom_chat_history = [ ( 'こんにちは、アシスタント。これから質問に答えて下さい。', 'こんにちは。了解しました。' ) ] chat_history = [] logging.basicConfig(level=logging.INFO) logger = logging.getLogger("__name__") logger.debug("調査用ログ") st.title("💬 Chatbot") if "messages" not in st.session_state: st.session_state["messages"] = [{"role": "assistant", "content": "お困りごとはございますか?"}] for msg in st.session_state.messages: st.chat_message(msg["role"]).write(msg["content"]) if prompt := st.chat_input(): st.session_state.messages.append({"role": "user", "content": prompt}) st.chat_message("user").write(prompt) response = st.session_state.chat_engine.chat(prompt) # response = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=st.session_state.messages) msg = str(response) st.session_state.messages.append({"role": "assistant", "content": msg}) st.chat_message("assistant").write(msg) if st.button("リセット",use_container_width=True): st.session_state.chat_engine.reset() st.session_state.messages = [{"role": "assistant", "content": "お困りごとはございますか?"}] logger.info("reset") def initialize_index(): logger.info("initialize_index start") text_splitter = TokenTextSplitter(separator="。", chunk_size=1500 , chunk_overlap=DEFAULT_CHUNK_OVERLAP , tokenizer=tiktoken.get_encoding("gpt2").encode) node_parser = SimpleNodeParser(text_splitter=text_splitter) service_context = ServiceContext.from_defaults(node_parser=node_parser) d = 1536 k=2 faiss_index = faiss.IndexFlatL2(d) # デバッグ用 llama_debug_handler = LlamaDebugHandler() callback_manager = CallbackManager([llama_debug_handler]) service_context = ServiceContext.from_defaults(callback_manager=callback_manager) lock = Lock() with lock: if os.path.exists(index_name): storage_context = StorageContext.from_defaults( docstore=SimpleDocumentStore.from_persist_dir(persist_dir=index_name), graph_store=SimpleGraphStore.from_persist_dir(persist_dir=index_name), vector_store=FaissVectorStore.from_persist_dir(persist_dir=index_name), index_store=SimpleIndexStore.from_persist_dir(persist_dir=index_name), ) st.session_state.index = load_index_from_storage(storage_context=storage_context,service_context=service_context) # index = load_index_from_storage(StorageContext.from_defaults(persist_dir=index_name), service_context=service_context) response_synthesizer = get_response_synthesizer(response_mode='refine') st.session_state.query_engine = st.session_state.index.as_query_engine(response_synthesizer=response_synthesizer) st.session_state.chat_engine = CondenseQuestionChatEngine.from_defaults( query_engine=st.session_state.query_engine, condense_question_prompt=custom_prompt, chat_history=chat_history, verbose=True ) else: documents = SimpleDirectoryReader("./documents").load_data() vector_store = FaissVectorStore(faiss_index=faiss_index) storage_context = StorageContext.from_defaults(vector_store=vector_store) st.session_state.index = VectorStoreIndex.from_documents(documents, storage_context=storage_context,service_context=service_context) st.session_state.index.storage_context.persist(persist_dir=index_name) response_synthesizer = get_response_synthesizer(response_mode='refine') st.session_state.query_engine = st.session_state.index.as_query_engine(response_synthesizer=response_synthesizer) st.session_state.chat_engine = CondenseQuestionChatEngine.from_defaults( query_engine=st.session_state.query_engine, condense_question_prompt=custom_prompt, chat_history=chat_history, verbose=True ) if os.path.exists(pkl_name): with open(pkl_name, "rb") as f: st.session_state.stored_docs = pickle.load(f) else: st.session_state.stored_docs=list() if __name__ == "__main__": # init the global index logger.info("main start") if "chat_engine" not in st.session_state: initialize_index() logger.info("initializing index...")