Spaces:
Runtime error
Runtime error
from mmdet.apis import init_detector, inference_detector | |
import gradio as gr | |
import cv2 | |
import sys | |
import torch | |
import numpy as np | |
print('Loading model...') | |
device = 'gpu' if torch.cuda.is_available() else 'cpu' | |
table_det = init_detector('model/table-det/config.py', | |
'model/table-det/model.pth', device=device) | |
def get_corners(points): | |
""" | |
Returns the top-left, top-right, bottom-right, and bottom-left corners | |
of a rectangle defined by a list of four points in the form of tuples. | |
""" | |
# Sort points by x-coordinate | |
sorted_points = sorted(points, key=lambda p: p[0]) | |
# Split sorted points into left and right halves | |
left_points = sorted_points[:2] | |
right_points = sorted_points[2:] | |
# Sort left and right points by y-coordinate | |
left_points = sorted(left_points, key=lambda p: p[1]) | |
right_points = sorted(right_points, key=lambda p: p[1], reverse=True) | |
# Return corners in order: top-left, top-right, bottom-right, bottom-left | |
return (left_points[0], right_points[0], right_points[1], left_points[1]) | |
def funct(mask_array): | |
table_images = [] | |
table_bboxes = [] | |
contours, hierarchy = cv2.findContours(mask_array, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) | |
for cnt in contours: | |
rect = cv2.minAreaRect(cnt) | |
box = cv2.boxPoints(rect) | |
epsilon = cv2.arcLength(cnt,True) | |
approx = cv2.approxPolyDP(cnt, 0.02*epsilon, True) | |
points = np.squeeze(approx) | |
if len(points) != 4: | |
points = box | |
tl, br, bl, tr = get_corners(points.tolist()) | |
table_bboxes.append([tl, tr, br, bl]) | |
return table_bboxes | |
def predict(image_input): | |
results = inference_detector(table_det, image_input) | |
print(results) | |
return {'message': 'success'} | |
def run(): | |
demo = gr.Interface( | |
fn=predict, | |
inputs=gr.components.Image(), | |
outputs=gr.JSON(), | |
) | |
demo.launch(server_name="0.0.0.0", server_port=7860) | |
if __name__ == "__main__": | |
run() | |