table-det / main.py
napatswift
Init project
b7f49b8
raw
history blame
2 kB
from mmdet.apis import init_detector, inference_detector
import gradio as gr
import cv2
import sys
import torch
import numpy as np
print('Loading model...')
device = 'gpu' if torch.cuda.is_available() else 'cpu'
table_det = init_detector('model/table-det/config.py',
'model/table-det/model.pth', device=device)
def get_corners(points):
"""
Returns the top-left, top-right, bottom-right, and bottom-left corners
of a rectangle defined by a list of four points in the form of tuples.
"""
# Sort points by x-coordinate
sorted_points = sorted(points, key=lambda p: p[0])
# Split sorted points into left and right halves
left_points = sorted_points[:2]
right_points = sorted_points[2:]
# Sort left and right points by y-coordinate
left_points = sorted(left_points, key=lambda p: p[1])
right_points = sorted(right_points, key=lambda p: p[1], reverse=True)
# Return corners in order: top-left, top-right, bottom-right, bottom-left
return (left_points[0], right_points[0], right_points[1], left_points[1])
def funct(mask_array):
table_images = []
table_bboxes = []
contours, hierarchy = cv2.findContours(mask_array, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
for cnt in contours:
rect = cv2.minAreaRect(cnt)
box = cv2.boxPoints(rect)
epsilon = cv2.arcLength(cnt,True)
approx = cv2.approxPolyDP(cnt, 0.02*epsilon, True)
points = np.squeeze(approx)
if len(points) != 4:
points = box
tl, br, bl, tr = get_corners(points.tolist())
table_bboxes.append([tl, tr, br, bl])
return table_bboxes
def predict(image_input):
results = inference_detector(table_det, image_input)
print(results)
return {'message': 'success'}
def run():
demo = gr.Interface(
fn=predict,
inputs=gr.components.Image(),
outputs=gr.JSON(),
)
demo.launch(server_name="0.0.0.0", server_port=7860)
if __name__ == "__main__":
run()